
A. Datasets
ISIC2018 dataset. ISIC2018 dataset is a skin lesion

segmentation dataset [4]. It consists of 2596 images with
corresponding annotations. In our experiments, we resize
the images to 384 × 384 resolution unless otherwise men-
tioned. We randomly split the images into 80% for training,
10% for validation, and 10% for testing.

Polyp datasets. Kvasir contains 1,000 polyp images
collected from the polyp class in the Kvasir-SEG dataset
[8]. CVC-ClinicDB [1] consists of 612 images extracted
from 31 colonoscopy videos. Following CASCADE [14],
we adopt the same 900 and 550 images from Kvasir and
CVC-ClinicDB, respectively as the training set. We use
the remaining 100 and 62 images as the respective testsets.
To assess the generalizability of our proposed decoder, we
use two unseen test datasets, namely EndoScene [21], and
ColonDB [18]. EndoScene and ColonDB consists of 60 and
380 images, respectively.

Retinal vessels segmentation datasets. The DRIVE
[17] dataset has 40 retinal images with segmentation anno-
tations. All the retinal images in this dataset are 8-bit color
images of resolution 565 × 584 pixels. The official splits
contain a training set of 20 images and a test set of 20 im-
ages. The CHASE DB1 [2] dataset contains 28 color retina
images of 999× 960 pixels resolution. There are two man-
ual annotations of each image for segmentation. We use the
first annotation as the ground truth. Following [11], we use
the first 20 images for training, and the remaining 8 images
for testing.

B. Experiments
B.1. Implementation details and evaluation metrics

In this subsection, we discuss the implementation details
of our proposed decoder for Retinal vessel segmentation.
We have conducted experiments on two retinal datasets such
as DRIVE [17] and CHASE DB1 [2]. In both cases, we first
extend the training set using horizontal flips, vertical flips,
horizontal-vertical flips, random rotations, random colors,
and random Gaussian blurs. Through this process, we get
260 images including our 20 original training images. We
use 26 of these images for validation that belong to 4 ran-
domly selected original images. In the case of the DRIVE
dataset, we resize the images into 768 × 768 resolution for
PVT and (768 × 768, 672 × 672) resolutions for MERIT.
In the case of CHASE DB1, we use 960 × 960 resolution
inputs for PVT and (768 × 768, 672 × 672) resolution in-
puts for MERIT. However, we resize the output segmenta-
tion maps to the original resolution to get evaluation metrics
during inference. We use random flips and rotations with
a probability of 0.5 as augmentation methods during train-
ing. To train our models, we use the AdamW optimizer with
both learning rate and weight decay of 1e-4. We optimize

Methods
Avg

DICE mIoU

UNet [16] 85.5 78.5
UNet++ [28] 80.9 72.9
PraNet [6] 87.5 78.7
CaraNet [12] 87.0 78.2
TransUNet [3] 88.0 80.9
TransFuse [27] 90.1 84.0
UCTransNet [22] 90.5 83.0
PolypPVT [5] 91.3 85.2
PVT-CASCADE [14] 91.1 84.9

PVT-GCASCADE (Ours) 91.51±0.61 86.53±0.54

Table 1. Results on ISIC2018 dataset. The results of UNet,
UNet++, PraNet, CaraNet, TransUNet, TransFuse, UCTransNet,
and PolypPVT are taken from [19]. We produce the results of
PVT-CASCADE using our experimental settings for this dataset.
All PVT-GCASCADE results are averaged over five runs. The
best results are in bold.

the combined weighted BCE and weighted mIoU loss func-
tion. The MUTATION is used to aggregate multi-stage loss.
We train our networks for 200 epochs with a batch size of 4
and 2 for DRIVE and CHASE DB, respectively.

We use accuracy (Acc), sensitivity (Sen), specificity
(Sp), DICE, and IoU scores as evaluation metrics. We re-
port the percentage (%) score averaging over five runs for
both datasets.

B.2. Experimental results on ISIC2018 dataset

Table 1 presents the average DICE scores of our PVT-
GCASCADE and MERIT-GCASCADE along with other
SOTA methods on the ISIC2018 dataset. This dataset is
different than the CT and MRI images used in the above
experiments. In this case also, it is evident from the
table that our PVT-GCASCADE achieves the best aver-
age DICE (91.51%) and mIoU (86.53%) scores. PVT-
GCASCADE outperforms its counterpart PVT-CASCADE
by 0.4% DICE and 0.6% mIoU scores.

B.3. Experimental results on Polyp datasets

We evaluate the performance and generalizability of our
G-CASCADE decoder on four different polyp segmentation
testsets among which two are completely unseen datasets
collected from different labs. Table 2 displays the DICE
and mIoU scores of SOTA methods along with our G-
CASCADE decoder. From Table 2, we can see that G-
CASCADE significantly outperforms all other methods on
both DICE and mIoU scores. It is noteworthy that G-
CASCADE outperforms the best CNN-based model UA-
CANet by a large margin on unseen datasets (i.e., 9.8%
DICE score improvement in ColonDB). Therefore, we can
conclude that due to using transformers as a backbone



Methods
CVC-ClinicDB Kvasir ColonDB EndoScene
DICE mIoU DICE mIoU DICE mIoU DICE mIoU

UNet [16] 82.3 75.5 81.8 74.6 51.2 44.4 71.0 62.7
UNet++ [28] 79.4 72.9 82.1 74.3 48.3 41.0 70.7 62.4
PraNet [6] 89.9 84.9 89.8 84.0 71.2 64.0 87.1 79.7
CaraNet [12] 93.6 88.7 91.8 86.5 77.3 68.9 90.3 83.8
UACANet-L [9] 91.07 86.7 90.83 85.95 72.57 65.41 88.21 80.84
SSFormerPVT [23] 92.88 88.27 91.11 86.01 79.34 70.63 89.46 82.68
PolypPVT [5] 93.08 88.28 91.23 86.3 80.75 71.85 88.71 81.89
PVT-CASCADE [14] 94.34 89.98 92.58 87.76 82.54 74.53 90.47 83.79

PVT-GCASCADE (Ours) 94.68 90.18 92.74 87.90 82.61 74.60 90.56 83.87

Table 2. Results on polyp segmentation datasets. Training on combined Kvasir [8] and CVC-ClinicDB [1] trainset. The results of UNet,
UNet++ and PraNet are taken from [6]. We get the results of PolypPVT, SSFormerPVT, and UACANet from [14]. PVT-GCASCADE
results are averaged over five runs. The best results are shown in bold.

Methods Acc Sen Sp DICE IoU

UNet [16] 96.78 80.57 98.33 81.41 68.64
UNet++ [28] 96.79 78.91 98.50 81.14 68.27
Attention UNet [13] 96.62 79.06 98.31 80.39 67.21
FR-UNet [11] 97.05 83.56 98.37 83.16 71.20
PVTV2-b2 (only) [24] 96.24 82.02 97.61 79.14 65.48
PVT-CASCADE [14] 96.79 83.07 98.10 81.73 69.10
MERIT-CASCADE [15] 96.89 82.94 98.22 82.21 69.08

PVT-GCASCADE (Ours) 96.89 83.00 98.22 82.10 69.70
MERIT-GCASCADE (Ours) 97.07 82.81 98.44 82.90 70.81

Table 3. Results (%) of Retinal Vessel Segmentation on DRIVE
dataset. The results of UNet, UNet++, Attention UNet, and FR-
UNet are taken from [11]. All other results are averaged over five
runs in our experimental setups. The best results are in bold.

Methods Acc Sen Sp DICE IoU

UNet [16] 97.43 76.50 98.84 78.98 65.26
UNet++ [28] 97.39 83.57 98.32 80.15 66.88
Attention UNet [13] 97.30 83.84 98.20 79.64 66.17
FR-UNet [11] 97.48 87.98 98.14 81.51 68.82
PVTV2-b2 (only) [24] 97.25 85.07 98.07 79.58 66.12
PVT-CASCADE [14] 97.55 85.83 98.34 81.50 68.80
MERIT-CASCADE [15] 97.60 84.97 98.45 81.68 69.06

PVT-GCASCADE (Ours) 97.71 85.84 98.51 82.51 70.24
MERIT-GCASCADE (Ours) 97.76 84.93 98.62 82.67 70.50

Table 4. Results (%) of Retinal Vessel Segmentation on
CHASE DB1 dataset. The results of UNet, UNet++, Attention
UNet, and FR-UNet are taken from [11]. All other results are av-
eraged over five runs in our experimental setups. The best results
are in bold.

network and our graph-based convolutional attention de-
coder, PVT-GCASCADE inherits the merits of transform-
ers, GCNs, CNNs, and local attention which makes them
highly generalizable for unseen datasets.

B.4. Experimental results on Retinal vessels seg-
mentation datasets

We have conducted experiments on two retinal vessel
segmentation datasets, namely DRIVE and CHASE DB1.
The experimental results are reported in Tables 3 and
4. Our G-CASCADE decoder outperforms the base-
line CASCADE decoder with significantly lower compu-
tational costs. Specifically, our PVT-GCASCADE shows
0.37% and 1.01% improvements in DICE score over PVT-
CASCADE in DRIVE and CHASE DB1 datasets, respec-
tively. Similarly, our MERIT-GCASCADE exhibits 0.69%
and 0.99% improvements in DICE score in DRIVE and
CHASE DB1 datasets, respectively. From Tables 3 and 4,
we can conclude that our methods show competitive perfor-
mance compared to the SOTA approaches. Although FR-
UNet achieves a 0.26% better DICE score in the DRIVE
dataset, it has a 1.16% lower DICE score in CHASE DB1
than our MERIT-GCASCADE. Besides, FR-UNet splits the
retinal images into 48 × 48 pixels patches in a stride of 6
pixels during training but we use the whole retinal images
during both training and inference. Consequently, we have
a significantly lower number of samples for training com-
pared to FR-UNet. We can conclude from the results that
our G-CASCADE decoder equally performs well in retinal
vessel segmentation.

C. Ablation Study

C.1. Comparison among different graph convolu-
tions in GCAM

We report the experimental results of our decoder with
different graph convolutions in Table 5. As shown in Table
5, Max-Relative (MR) [10] graph convolution provides the
best DICE score (83.28%) with only 0.342G FLOPs and
1.78M parameters. Although GIN [26] has slightly lower
FLOPs and parameters, it provides the lowest DICE score



Graph Convolutions #FLOPs(G) #Params(M) DICE (%)

GIN [26] 0.313 1.59 82.22
EdgeConv [25] 0.957 1.78 82.81
GraphSAGE [7] 0.520 1.88 83.10
Max-Relative [10] (Ours) 0.342 1.78 83.28

Table 5. Experimental results of different graph convolutions
in GCAM block on Synapse Multi-organ dataset. We use the
PVTV2-b2 encoder and only report the #FLOPs and #parameters
of the decoder. All the results are averaged over five runs. The best
results are shown in bold.

Architectures #FLOPs(G) #Params(M) DICE (%)

PVT-CASCADE 5.84 34.13 83.28
PVT-GCASCADE 4.252 26.64 83.40

MERIT-CASCADE 33.31 147.86 84.54
MERIT-GCASCADE 26.143 132.93 84.63

Table 6. Comparison of overall computational complexity. We use
the PVTV2-b2 backbone with an input resolution of 224× 224 in
both PVT-CASCADE and PVT-GCASCADE. We use two Small
MaxViT backbones with input resolutions of 256×256 and 224×
224 in MERIT architectures.

Input resolutions DICE (%) mIoU (%) HD95 (%)

224×224 83.28 73.91 15.83
256×256 84.21 75.32 14.58
384×384 86.01 78.10 13.67

Table 7. Experimental results of PVT-GCASCADE with different
input resolutions on Synapse Multi-organ dataset. All the results
are averaged over five runs.

(82.22%). EdgeConv [25] and GraphSAGE [7] graph con-
volutions have lower DICE scores than the MR graph con-
volution with higher computational costs.

C.2. Overall computational complexity

We report the total #parameters and #FLOPs of en-
coder backbones and our decoder in Table 6. We can see
from Table 6 that overall computational complexity de-
pends on the #parameters and #FLOPs of the encoder
backbones. We implement our decoder on top of PVTV2-
b2 [24] and Small MaxViT [20] backbones. Our PVT-
GCASCADE has 4.252G FLOPs and 26.64M parameters,
which is 1.588G and 7.49M lower than the corresponding
PVT-CASCADE architecture. Due to the larger size of two
Small MaxViT backbones in MERIT-CASCADE architec-
ture (i.e., 33.31G FLOPs and 147.86M parameters), our
MERIT-GCASCADE (i.e., 26.143G FLOPs and 132.93M
parameters) is also larger in size. In both cases, the savings
in #FLOPs and #parameters come only from our decoder.
Our proposed decoder can easily be plugged into other hier-

archical encoders; if a lightweight encoder is used, the total
computational cost will be reduced.

C.3. Influence of input resolution

Table 7 presents the quantitative segmentation perfor-
mance of PVT-GCASCADE network with different input
resolutions. We conduct experiments with three input reso-
lutions such as 224×224, 256×256, and 384×384. It is ev-
ident from the table that performance improved in all three
evaluation metrics for higher input resolutions. We get the
best DICE and mIoU 86.01% and 78.10%, respectively with
the input resolution of 384×384.
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