
Supplementary Material

1. NearFarMix Augmentation

Figure 1 elegantly illustrates the operation of the pro-
posed NearFarMix augmentation, delineating the four re-
gions—near, pre-far, overlap, and exclusive—that con-
tribute to the final augmented output. Despite the amal-
gamation of four regions, the pre-far, overlap, and exclu-
sive regions primarily generate far regions, with overlap re-
gions consequently subtracted. Importantly, the augmenta-
tion is designed for batch-wise application to enhance exe-
cution speed. The step-by-step implementation is compre-
hensively depicted in Algorithm 3.

Additionally, Fig. 3 and Fig. 2 provide additional exam-
ples between the proposed NearFarMix and DepthMix [2].

Algorithm 1 Batchwise Window Partition

x← Input ▷ Features
hw, ww ← window size ▷ Size of each window

Partition features into local dense windows
B,H,W,C = shape(x)
x = reshape(x, shape = [B, H

hw
, hw,

W
ww

, ww, C])
x = transpose(x, permute axis = [0, 1, 3, 2, 4, 5])
x = reshape(x, shape = [B × H×W

hw×ww
, hw, ww, C])

Algorithm 2 Batchwise Grid Partition

x← Input ▷ Features
hg, wg ← grid size ▷ Size of each grid

Partition features into global sparse grids
B,H,W,C = shape(x)
x = reshape(x, shape = [B, hg,

H
hg

, wg,
W
wg

, C])

x = transpose(x, permute axis = [0, 1, 3, 2, 4, 5])
x = reshape(x, shape = [B, hg × wg,

H×W
hg×wg

, C])

x = transpose(x, permute axis = [0, 2, 1, 3])
x = reshape(x, shape = [B × H×W

hg×wg
, hg, wg, C])

Algorithm 3 Batchwise NearFarMix Augmentation

I1 ← Images ▷ Input images
D1 ← Depths ▷ Input depths
S1 ← Semantics ▷ Input semantics
U ← random uniform ▷ Uniform distribution
Dmin ← 20(KITTI) or 1.5(NYUv2) ▷ Min depth
Dmax ← 60(KITTI) or 6.5(NYUv2) ▷ Max depth

Roll batch for fast shuffling
I2 = roll(I1, shift = 1, axis = 0) ▷ Roll Images
D2 = roll(D1, shift = 1, axis = 0) ▷ Roll Depths
S2 = roll(S1, shift = 1, axis = 0) ▷ Roll Semantics

Depth threshold range for batch
dmin = max(min(D1, axis = (1, 2, 3))) ▷ Min depth
dmax = min(max(D1, axis = (1, 2, 3))) ▷ Max depth

Threshold for Near-Far region
B,H,W,C = shape(I1)
thrmin = max(Dmin, dmin) ▷ Clip min depth
thrmax = min(Dmax, dmax) ▷ Clip max depth
thrs = U(shape = [B, 1, 1, 1], ▷ Random thresholds

min = thrmin,
max = thrmax)

Compute binary masks of regions for blending
M1 = D1 <= thrs ▷ Broadcasted Near region mask
M2 = D2 > thrs ▷ Broadcasted pre-Far region mask
Mo = M1 ⊙M2 ▷ Overlap region mask
Me = (1−M1)⊙ (1−M2) ▷ Exclusive region mask

Perform blending of regions
I ′ = (I1 ⊙M1)near + ((I2 ⊙M2) + (I2 ⊙Me)− (I2 ⊙
Mo))far ▷ Augmented image
D′ = (D1 ⊙M1)near + ((D2 ⊙M2) + (D2 ⊙Me) −
(D2 ⊙Mo))far ▷ Augmented depth
S′ = (S1⊙M1)near+((S2⊙M2)+(S2⊙Me)− (S2⊙
Mo))far ▷ Augmented semantics

2. Symbiotic Transformer

Transformers: Equation (1) presents the detailed math-
ematical expression for Symbiotic Transformer, which sym-

1

Figure 1. Proposed NearFarMix augmentation. The depth map undergoes thresholding to generate Near and pre-Far regions. Then, these
regions are manipulated to produce Overlap and Exclusive regions. The Far region is then generated by combining the pre-Far,
Overlap, and Exclusive regions, with the Exclusive region being subtracted and the remaining regions added. Finally, the Near and Far
regions are combined to generate the augmented image.

biotically enhances both depth and semantics via local-
global cross-attention. In the equation, FQ

x represents query
features of x, FKV

y denotes key-value features of y, and Fy

signifies the output features contextualized by x. Specif-
ically, for SGT, x = s and y = d, while for DGT,
x = d and y = s. Moreover, DGT = LG-CAT

DG
and

SGT = LG-CAT
SG

correspond to depth and semantics-
guided local-global cross-attention transformers.

Cross Attentions: Under the hood, DGT and SGT em-
ploy semantics-guided cross attention (SG-CA) and depth-
guided cross attention (DG-CA), respectively to contextu-
alize features. SG-CA and DG-CA is mathematically elab-
orated in Eq. (2) and Eq. (3). In these equations, W rep-
resents the weight of the FFN layer, Qx represents query
features, Ky and Vy represent key and value features, Smx
denotes softmax, and d is the query/key dimension. B rep-
resents relative positional bias, sampled similar to [1]. The
Local-Global Cross-Attention Transformer (LG-CAT), em-
ployed by both SGT and DGT, can be implemented using
Algorithm 4.

Partition Operation: Further, the algorithms for
WindowPartition and GridPartition operations which are

used in Block and Grid attention also slightly different from
the methods of Max-ViT [4], are detailed in Algorithm 1
and Algorithm 2, respectively. It is noteworthy that Max-
ViT implemented these operations using einops [3].

Figure 2. Additional qualitative comparisons between proposed NearFarMix and DepthMix augmentation on NYUv2 dataset.

Figure 3. Additional qualitative comparisons between proposed NearFarMix and DepthMix augmentation on KITTI dataset.

Sym-T(F′
d,F

′
s) =

FQ

d = FKV
d = F′

d

FQ
s = FKV

s = F′
s

Fs = LG-CAT
DG

(FQ
d ,FKV

s)
Fd = LG-CAT

SG
(FQ

s ,FKV
d)

 (1)

SG-CA = CA(Qs,Kd,Vd)

= Smx

(
QsKd

T

√
d

+B

)
Vd

= Smx

(
(FQ

s ·Ws
Q)(FKV

d ·Wd
K)T

√
d

+B

)
(FKV

d ·Wd
V)

(2)

Algorithm 4 Local-Global Cross-Attention Transformer
(LG-CAT)

FQ
x , FKV

y ← inputs ▷ Input features
x← FQ

x ▷ Query features of depth/semantics
y ← FKV

y ▷ Key-value features of semantics/depth
i← 0 ▷ Initialize counter

while i ̸= 2 do
Block Cross Attention
x1 = layer norm(x)
y1 = layer norm(y)
x1,q = FFN(window partition(x1)) ▷ Query gen.
y1,k, y1,v = FFN(window partition(y1)) ▷ KeyValue
y2 = CA(x1,q, y1,k, y1,v) ▷ Apply cross-attention
y2 = y1 + window reverse(FFN(y2)) ▷ Residual

Grid Cross Attention
y2 = layer norm(y2)
x2,q = FFN(grid partition(x1)) ▷ Query
y2,k, y2,v = FFN(grid partition(y2)) ▷ KeyValue
y3 = CA(x2,q, y2,k, y2,v) ▷ Apply cross-attention
y3 = y2 + grid reverse(FFN(y3)) ▷ Residual
y = y3 ▷ Reset variable for loop
i = i+ 1 ▷ Increment counter

end while

FusedMBConv - Channel Attention
ŷ = DWConv3x3(y) ▷ Depthwise convolution
ŷ = GELU(ŷ) ▷ Apply activation
ŷ = SE(ŷ) ▷ Squeeze-Excitation
ŷ = Conv1x1(ŷ) ▷ Convolution
ŷ = y + ŷ ▷ Residual

output← ŷ

DG-CA = CA(Qd,Ks,Vs)

= Smx

(
QdKs

T

√
d

+B

)
Vs

= Smx

(
(FQ

d ·Wd
Q)(FKV

s ·Ws
K)T

√
d

+B

)
(FKV

s ·Ws
V)

(3)

3. Architecture Details
The architectural specifications, encompassing input,

output, layer name, and layer details, are succinctly laid out
in Table 1. Here, E and D represent the input/output of the
encoder/decoder, while ST and N denote to the Symbiotic
Transformer and the Neck.

References
[1] Ali Hatamizadeh, Hongxu Yin, Jan Kautz, and Pavlo

Molchanov. Global context vision transformers. arXiv
preprint arXiv:2206.09959, 2022. 2

[2] Lukas Hoyer, Dengxin Dai, Yuhua Chen, Adrian Koring,
Suman Saha, and Luc Van Gool. Three ways to improve se-
mantic segmentation with self-supervised depth estimation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 11130–11140, 2021. 1

[3] Alex Rogozhnikov. Einops: Clear and reliable tensor manip-
ulations with einstein-like notation. In International Confer-
ence on Learning Representations, 2021. 2

[4] Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang, Pey-
man Milanfar, Alan Bovik, and Yinxiao Li. Maxvit: Multi-
axis vision transformer. arXiv preprint arXiv:2204.01697,
2022. 2

Table 1. Architectural Specifications of proposed method where h, w signify attention heads and window size; Conv denotes 2D
convolution with k, s, c as kernel size, stride size, and output channels; act and norm represent activation and normalization types; sc
indicates upscale size.

Input Size: H ×W× 3

Layer Name Input Output Output Size Architecture

Stem Image E0
H
4 ×

W
2 × 128

Conv(c=128, k=3, s=2)
Conv(c=128, k=3, s=1)

Encoder
Stage 1 E0 E1

H
8 ×

W
4 × 128

[
Max-ViT-Block(h=4, w=7)

]
× 2

Encoder
Stage 2 E1 E2

H
16 ×

W
8 × 256

[
Max-ViT-Block(h=8, w=7)

]
× 6

Encoder
Stage 3 E2 E3

H
32 ×

W
16 × 512

[
Max-ViT-Block(h=16, w=7)

]
× 14

Encoder
Stage 4 E3 E4/ D4

H
32 ×

W
32 × 1024

[
Max-ViT-Block(h=16, w=7)

]
× 2

Decoder
Stage 3 (D4, E3) D3

H
32 ×

W
32 × 512

Upsample(sc=2)
Concat([E3, D4], axis=-1)

Conv(c=512, k=3, s=1, norm=’layer’, act=’gelu’)

Decoder
Stage 3 (D3, E2) D2

H
16 ×

W
16 × 256

Upsample(sc=2)
Concat([E2, D3], axis=-1)

Conv(c=256, k=3, s=1, norm=’layer’, act=’gelu’)

Decoder
Stage 1 (D2, E1) D1

H
4 ×

W
4 × 128

Upsample(sc=2)
Concat([E1, D2], axis=-1)

Conv(c=128, k=3, s=1, norm=’layer’, act=’gelu’)

Neck D1 (Nd, Ns)
(H4 ×

W
4 × 150,

H
4 ×

W
4 × 150)

(
[
Conv(c=150, k=3, s=1, norm=’layer’, act=’gelu’)

]
× 2,[

Conv(c=150, k=3, s=1, norm=’layer’, act=’gelu’)
]
× 2)

Symbiotic
Transformer (Nd, Ns) (STd, STs)

(H4 ×
W
4 × 150,

H
4 ×

W
4 × 150)

[
Block-Cross-Attention(h=4, w=7)
Grid-Cross-Attention(h=4, w=7)

]
× 2[

FusedMBConv
]
× 1

Head (STd, STs) (Depth, Semantics)
(H ×W × 1,
H ×W × 150)

(

[
Conv(k=3, s=1, act=’sigmoid’)

Upsample(sc=4)

]
× 2,[

Conv(k=3, s=1, act=’softmax’)
Upsample(sc=4)

]
× 2)

(Depth: H ×W × 1, Semantics: H ×W × 150)

	. NearFarMix Augmentation
	. Symbiotic Transformer
	. Architecture Details

