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Overview

This is Supplementary Material for the paper, ‘Image
Labels Are All You Need for Coarse Seagrass Segmenta-
tion’. We further explore the performance of our introduced
ensemble of classifiers, SeaFeats and SeaCLIP. Section 1
supplements the results presented in the main paper with
additional qualitative examples of failure cases and analysis
for each case. We also provide additional implementation
details in Section 2.

1. Additional Qualitative Results

In Section 5.2.2 of our main paper, we present the out-
put results when combining our classifiers, SeaFeats and
SeaCLIP, in an ensemble. This combination exhibits su-
perior performance than using either classifier individually,
because the generally higher-performing SeaFeats model
benefits from the conservative predictions of SeaCLIP to
result in more robust performance overall. In this section,
we further analyze the effect of combining SeaFeats and Sea-
CLIP, and we focus on failure cases which result in incorrect
predictions. For each example, we also compare our qualita-
tive predictions to the outputs of our re-implementation of
the EfficientNet-B5 approach presented in [3].

There are a range of factors which may result in a fail-
ure case: edge patches which are subject to camera distor-
tion, resulting in blurry, darkened or warped image patches
(Supp. Fig. 1, first row); significant difference in scale or
resolution of inference imagery; visually degraded images
due to turbidity, lighting or algae (Supp. Fig. 1, second row);
inference on images which contain out-of-distribution sea-
grass species or seagrasses at a different stage of growth
than seen in the training set (Supp. Fig. 1, third row); or
presence of unknown objects in inference images. These
factors are largely caused by limitations of the training data
— a larger, more varied dataset which encompasses a wider

range of conditions, visual characteristics, seagrass appear-
ance changes and image qualities would improve the ability
of the models to generalize to previously unseen conditions.

Supp. Fig. | (first row) demonstrates the impact of camera
distortion and blur for image patches at the edge of images.
SeaFeats and SeaCLIP are more likely to incorrectly classify
these patches than the clear image patches at the center of
the image. SeaFeats classifies the majority of the patches cor-
rectly, however SeaCLIP is uncertain about multiple patches
and misclassifies some edge patches as the ‘Strappy’ species
of seagrass (yellow) and others as ‘Background’ (pink). This
example also demonstrates a failure case for the ensemble of
classifiers, such that the correct predictions from one model
(SeaFeats) are overridden by the incorrect predictions of the
other (SeaCLIP). Although there are examples when this
occurs, in general the ensemble of classifiers results in im-
proved and more robust performance, as demonstrated in the
results section of the main paper.

Supp. Fig. 1 (second row) illustrates that images degraded
due to turbidity, lighting and/or algae may result in incor-
rectly classified patches. In this example, the water column
has high levels of turbidity, resulting in an image with a
foggy appearance. Although the majority of patches in the
image are correctly classified (‘Strappy’ class in yellow),
all models incorrectly classify a few patches. This type of
failure case could be mitigated by increasing the range of
visual characteristics in the training dataset.

Supp. Fig. | (third row) demonstrates that all models in-
correctly classify image patches where the seagrass has a dif-
ferent visual appearance as compared to the training dataset.
Here, the Halophila spinulosa seagrass is not as dense as
in the training dataset (particularly in the center of the im-
age), and the seagrass is at an earlier stage of growth. The
distribution of training examples seen by the model needs to
encompass all stages of seagrass growth and other factors
including presence/absence of algae, season and weather
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Supplementary Figure 1. Example cases where both the prior approach [3] and our proposed classifiers fail. Top row: Many failure cases
occur around the edge of images due to camera distortion, blurring, or darker regions in these parts of the images. Middle row: Some images
may be visually degraded due to turbidity, lighting, or algae, resulting in failure cases. Bottom row: When models are deployed on images
from outside the distribution of the training data, the species of seagrass are more likely to be incorrectly assigned.

conditions to ensure that models can effectively transfer to a
variety of inference images.

These failure cases demonstrate how the availability and
variation of training data impacts on model performance.
Future work could include human-in-the-loop training or
bootstrapping to iteratively update models based on expert
verification or correction of model inferences during deploy-
ment.

2. Additional Implementation Details
2.1. SeaCLIP

We train SeaCLIP on image patches pseudo-labeled by
the CLIP large language model [4]. We use patches of size
520x578 pixels (Supp. Fig. 2), as per the DeepSeagrass
dataset [5]. The query phrases used for obtaining the binary
pseudo-labels are:

* ‘Background’: “a photo of sand”, “a photo of water”,

“a photo of sand or water”, “a blurry photo of water”,
“a blurry photo of sand”; and

LIS EEINT3

‘Seagrass’: “a blurry photo of seagrass”, “a photo con-

ELINNT3

taining some seagrass”, “a photo of underwater plants”,

ELINNT3

“a photo of underwater grass”, “a photo of green, grass-

CLINT3

like leaves underwater”, “a photo of seagrass”.

We assign the image-level seagrass species (i.e. ‘Ferny’,
‘Rounded’ or ‘Strappy’) to the patches pseudo-labeled by

DeepSeagrass [5]

Supplementary Figure 2. Example patches from each of the
datasets: DeepSeagrass [5] (left), Global Wetlands [1] (center)
and FloatyBoat [2] (right). The patch size between the datasets dif-
fer, but are selected to maintain a similar scale in terms of seagrass
appearance.

Global Wetlands [1] FloatyBoat [2]

CLIP as ‘Seagrass’ at training time.

2.2. Inference on Global Wetlands Dataset

We use the Global Wetlands dataset [1] to evaluate the
ability of our proposed models to generalize to unseen data
and to assess the performance of the SeaCLIP model. We
process the Global Wetlands dataset by splitting images into
50 (10x5) patches, resulting in a patch size of 192x216 pixels.
We selected this grid size to maintain a similar scale for the
seagrass within each image patch as for the DeepSeagrass
patches (as seen in Supp. Fig. 2).

When evaluating the performance of CLIP as a zero-shot
classifier on this dataset, we use the following prompts:



‘Background’: “a photo of sand”, “a photo of blue
water”, “a photo of murky, green water”, “a photo of
sand or water”’, “a blurry photo of water”, “a blurry

photo of sand”;

CEINNTS

LIS EEINT3

‘Seagrass’: “a blurry photo of seagrass”, “a photo con-

9 <

taining some seagrass”, “a photo of underwater plants”,

ELINT3

“a photo of underwater grass”, “a photo of green, grass-

CLINT3

like leaves underwater”, “a photo of seagrass”; and

‘Fish’: “a photo of fish”, “a close-up photo of fish”, “a
blurry photo of fish”, “a photo containing part of a fish”,
“a photo of fish scales”.

When training SeaCLIP on Global Wetlands, the CLIP-
generated pseudo-labels were created using the same
prompts as above.

2.3. Fine-tuning for FloatyBoat Dataset

For evaluation of model generalization to the Floaty-
Boat [2] autonomous surface vehicle dataset, we take the
SeaFeats model trained on DeepSeagrass and fine-tune it
on 10 background images and 10 seagrass images for 10
epochs. We use a range of data augmentations to improve
the ability of the model to generalize to the different cam-
era characteristics and imagery viewpoint: we randomly
apply augmentations which vary the color channels, linear
contrast, Gaussian blur, brightness, hue and saturation. We
additionally apply geometric augmentations including x and
y scaling, and left/right flipping.

At inference time, our approach assumes a 6x4 grid
for each FloatyBoat image, resulting in patches which are
468x455 pixels. Similarly to the Global Wetlands dataset,
this grid size is selected so that the seagrass appears at a
similar scale within each patch as the DeepSeagrass dataset

(Supp. Fig. 2).
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