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A. Supplementary Material

In this supplemental document, we provide some addi-
tional statistics on the MultiON 2.0 dataset (Appendix B), de-
tails of the Object detection module in MOPA (Appendix C),
and additional experiments on MultiON (Appendix D) and
ObjectNav (Appendix E). For MultiON, we first study the
performance of MOPA on natural objects (NAT-objects) in
Appendix D.1 to understand how the increased visual com-
plexity of the target objects (compared to CYL-objects) in-
fluences performance. Then we discuss our findings on the
different Navigation (Appendix D.2) and Exploration meth-
ods (Appendix D.3), and investigate the impact of having
distractor objects on the OracleSem agent in Appendix D.4.
We also discuss more about generalizability on n-ON in Ap-
pendix D.5 and effect of spatial map on longer-horizon task
planning in Appendix D.6. We also show visualizations of
episode rollouts of OracleSem on 5ON, PredSem on CYL
and NAT-objects in Appendix D.7.

B. MultiON 2.0 Dataset

Fig. 1 compares the path length of MultiON 2.0 valida-
tion set episodes against episodes from other datasets. The
episodes we generate are more complex that those in the
original MultiON dataset.

Fig. 2 shows that while the original MultiON dataset
contains a set of cylinder (CYL) objects of same size and
shape but varying colors, we additionally have a set of more
natural (NAT) looking objects of varying shape, size and
color in MultiON 2.0.

C. MOPA object detection

For detecting cylinders, we fine-tune a FasterRCNN [18]
and use KNN classifier to identify the color of the cylinder.
Specifically, in offline training, we fine-tune a FasterRCNN
model pretrained on MS-COCO on a set of 2k frames col-
lected by an oracle agent following the shortest path to the
goal. We then use a k-nearest neighbors classifier to distin-
guish between different categories. We choose the k-NN
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Figure 1. Comparing path lengths across tasks. (a) shows that
3ON2.0 has longer episodes than both Habitat ObjectNav 2021 [2]
and the original 3ON [21] (~26m vs. ~23m), with 5ON2.0 having
the longest average episode length. (b) shows that the average dis-
tance between the object-goal pairs is greater in 3ON2.0 than 3ON.
With more object-goals, 5ON2.0 has more closely-spaced objects.
These plots show that MultiON 2.0 contains harder episodes than
Habitat ObjectNav 2021 and 3ON, with longer average shortest
path and with object-goals placed farther apart.

classifier as it is has been found to be effective in prior work
in vision and robotics [1, 9, 13, 15, 20]. Concretely, we
sample the RGB value from the center of each bounding box
and use it to find the k-closest neighbors. We pick the color
label of the most frequent nearest neighbor, i.e. if αKNN%
of the nearest neighbors is of the same color, we select that
as the label. For our experiments, we used (k = 10) for the
number of nearest neighbors, and we set αKNN to 80% (i.e.
if 8 of the 10 nearest neighbors is of the same category, we
select that as the label).

D. MultiON experiments
Here we provide results for experiments on both the val-

idation and test sets. We also compare the performance of
MOPA with CYL and NAT objects.

D.1. Performance with natural objects

In Tab. 1, we present the results for CYL and NAT objects
with predicted (PredSem) and oracle semantics, using agents
with Uniform exploration policy and PointNav navigation.
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Object
Types

MOPA Modules Validation Test

O M E N Success Progress SPL PPL Success Progress SPL PPL

PredSem CYL FRCNN [5] U PN 50 (± 2) 65 (± 2) 21 (± 1) 26 (± 1) 52 (± 2) 66 (± 2) 21 (± 1) 27 (± 2)
NAT FRCNN [5] U PN 28 (± 2) 47 (± 2) 11 (± 1) 18 (± 1) 29 (± 2) 45 (± 2) 11 (± 1) 17 (± 1)

OracleSem CYL GT [5] U PN 80 (± 2) 87 (± 2) 35 (± 1) 38 (± 1) 81 (± 2) 87 (± 2) 37 (± 1) 39 (± 1)
NAT GT [5] U PN 80 (± 2) 85 (± 2) 35 (± 1) 38 (± 1) 81 (± 2) 87 (± 2) 37 (± 1) 39 (± 1)

OracleMap CYL GT GT U PN 84 (± 2) 90 (± 2) 37 (± 1) 41 (± 1) 81 (± 2) 85 (± 2) 36 (± 1) 39 (± 1)
NAT GT GT U PN 84 (± 2) 90 (± 2) 37 (± 1) 41 (± 1) 81 (± 2) 85 (± 2) 36 (± 1) 39 (± 1)

Table 1. MOPA performance on MultiON 2.0. We observe that the PredSem agent, which builds a map (M) using predicted semantic
labels (O), performs better on cylinder (‘CYL’) objects than natural (‘NAT’) objects. We compare its performance with two oracle agents,
OracleMap and OracleSem where ground-truth (‘GT’) is provided for either the mapping or object semantics. As expected, the performance
are mostly identical for the two object types for OracleMap and OracleSem, since the placement of the objects are the same for both, with
OracleMap outperforming OracleSem. These methods use Uniform (‘U’) as the Exploration (E) module and PointNav [17] (‘PN’) as the
Navigation (N ) module.

MultiON 2.0

MultiON

Figure 2. MultiON 2.0 vs MultiON objects. The original dataset
MultiON contains only cylinder objects, whereas MultiON 2.0
additionally contains more natural looking objects varying in shape,
size and color. These easily blend in the HM3D houses, thus
requiring better visual understanding for the agent. We use freely
available 3D models from Sketchfab.

With predicted semantics (PredSem), the performance for
the NAT objects drops compared with CYL since it is more
challenging to detect these objects than different colored
cylinders. When we use the OracleMap (the ground truth
map) and OracleSem (where we use ground-truth semantic
labels for the Object detection module), the performance on
CYL and NAT objects are similar. The same observation
holds when we compare different Navigation (Tab. 2) and
Exploration (Tab. 3) methods for CYL and NAT objects. The
performance variance for OracleSem in some cases for CYL
vs NAT datasets is due to the randomness in the Navigation
and Exploration modules.

D.2. Navigation performance

Tab. 2 provides the full comparison of the four different
navigation modules for both CYL and NAT objects, for both
the validation and test sets. In these experiments, we use the
OracleSem mapping module with Uniform exploration. The
performance on validation is similar to that of the test set,
with PointNav agents having the highest Success while the
Shortest Path Follower (SPF) has the highest SPL as it has
access to the ground-truth navigation meshes.
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Figure 3. Different Exploration strategies. In Uniform, the agent
uniformly samples exploration goals inside a local grid around it-
self, whereas in Stubborn, the agent selects each of the four corners
of a local grid around itself. In Frontier, the agent samples a goal
at the frontier, i.e., the boundary between the explored and the
unexplored areas. ANS is a learned exploration policy to predict
distant goals to maximize coverage.
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Figure 4. HM3D scenes. Majority of HM3D scenes are small.

D.3. Exploration performance

Tab. 3 provides the full comparison of four different ex-
poloration modules for both CYL and NAT objects, for both
the validation and test sets. In these experiments, we use the

https://sketchfab.com/3d-models


Method MOPA Modules Objects Validation Test

O M E N Success Progress SPL PPL Success Progress SPL PPL

OracleSem GT [5] Uniform PointNav [17] CYL 80 87 35 38 81 87 37 39
BFS Path Planner [7] 27 41 19 29 21 44 12 22
Shortest Path Follower∗ [19] 74 82 39 43 71 79 37 42
Fast Marching Method [4] 19 37 13 25 18 36 11 21

PointNav [17] NAT 80 85 35 38 81 87 37 39
BFS Path Planner [7] 27 41 19 29 21 44 12 22
Shortest Path Follower∗ [19] 72 82 38 43 71 79 37 42
Fast Marching Method [4] 19 37 13 25 18 36 11 21

Table 2. Navigation module performance. A learned PointNav, when used as the Navigation module in MOPA, outperforms analytical
path planners (BFS, Shortest Path Follower and Fast Marching Method) on the 3ON task for both CYL and NAT datasets. We study the
contribution of the Navigation module by using the ground truth (GT) semantic labels in the Object detection module, Map building from [5]
(M) and Uniform (Uniform) as the Exploration module. We use ∗ to indicate that the Shortest Path Follower has access to the ground truth
navigation meshes from the Habitat simulator.

Method MOPA Objects Validation Test

O M N E Success Progress SPL PPL Success Progress SPL PPL

OracleSem GT [5] PN Uniform 80 87 35 38 81 87 37 39
Uniform w/o Fail-Safe CYL 78 84 35 37 72 80 33 36
Stubborn 75 82 35 38 72 80 33 36
Stubborn w/o Fail-Safe [11] 69 77 25 27 66 75 23 26
Frontier [25] 75 81 35 37 72 80 33 35
ANS [4] 75 81 34 37 76 83 35 38

Uniform 80 85 35 38 81 87 37 39
Uniform w/o Fail-Safe NAT 78 84 35 37 72 80 33 36
Stubborn 75 82 35 38 72 80 33 36
Stubborn w/o Fail-Safe [11] 69 77 25 27 66 75 23 26
Frontier [25] 75 81 35 37 72 80 33 35
ANS [4] 75 81 34 37 76 83 35 38

Table 3. Exploration module performance. Uniform strategy outperforms other heuristic-based and learned exploration strategies in
MOPA on the 3ON task for both CYL and NAT datasets. We study the contribution of the Exploration module by using the ground truth
(GT) semantic labels in the Object detection module, Map building from [5] (M) and PointNav (PN) as the Navigation module.

OracleSem mapping module with the PointNav agent. We
illustrate how the different methods select goals in Fig. 3.
For the exploration policies, it is possible to select a goal
that is not navigable. To compensate for this, it is impor-
tant to limit the number of steps the agent takes toward the
exploration goal and select another exploration goal once
this limit (αexp) is reached. We conducted experiments with
and without this threshold (w/o Fail-Safe) and found that
this fail-safe is critical for good performance for both the
Uniform and Stubborn approaches. Fig. 4 shows that most
of the HM3D scenes are small having less than 100m2.

Delving into frontier. We investigate the popularly adopted
Frontier [25] based exploration as a third strategy, where
the agent selects an exploration goal at the boundary of the
explored and the unexplored area. While the original paper
selects the nearest accessible frontier as the exploration goal,
we found that the distance at which we sample the explo-
ration goal affects our agent performance (Fig. 5). The agent
achieves the best performance when the exploration goal is

Dist. = 2m Dist. = 3mDist. = 1m

Success = 41
Progress = 50

Success = 75
Progress = 81

Success = 73
Progress = 77

Figure 5. Analysis on Frontier. Agent performance varies with the
distance at which the exploration goal is sampled in Frontier-based
exploration. We achieve the best performance when the distance is
2m.

sampled at a distance of 2m (10 grid cells away with each
cell corresponding to 0.2m) from the boundary of explored
area. This can be attributed to the fact that the MultiON
task has a maximum step limit and thus expects the agent to



Distractors Validation Test

Success Progress SPL PPL Success Progress SPL PPL

X 86 89 41 42 81 90 37 40
✓ 85 89 39 40 81 87 37 39

Table 4. Effect of distractors on OracleSem performance. We
observe that the MOPA agent performs equally well in the presence
of distractors. This can be attributed to our target location retrieval
method from the semantic map comparing directly with the next
goal category.

effectively explore larger areas of the environment to find
goals. We find that the agent is able to explore larger areas
when we sample a goal farther away from the agent rather
than sampling multiple goals nearer to the agent. However,
we find that our simple Uniform strategy still outperforms
the more sophisticated Frontier based exploration in the Mul-
tiON task.

D.4. MultiON 2.0 distractors vs. no distractors

Our MultiON 2.0 dataset additionally contains distrac-
tor objects in both CYL and NAT-objects episodes to make
the episodes more challenging in terms of distinguishing
between the goals and the distractors. We thus perform ex-
periments to study the effect of having distractors for our
MOPA. We evaluate our OracleSem agent on both validation
and test sets for 3ON with and without distractors. Tab. 4
shows that the MOPA performs equally well in the presence
of distractors. This is intuitive since we select the target
location on the global map containing semantic categories
of both the targets and the distractors by directly comparing
with the next goal category given as input to the agent. How-
ever, distractors enable us to have cluttered environments
thus making MultiON 2.0 closer to a more realistic setting.
And our results demonstrate that our MOPA is invariant in
the presence of clutter (distractors) in the environment.

D.5. Generalization of MOPA on n-ON

We study the generalization of MOPA to n-ON (1ON,
3ON, 5ON) episodes. MOPA allows us to use the same
modules for any n-ON tasks without retraining. This is
very efficient and generalizable compared to end-to-end
approaches[21] that need to be retrained every time we intro-
duce more objects. To study this, we evaluate the OracleSem
agent on 1ON, 3ON, and 5ON episodes from both the vali-
dation and test sets. Although the performance decreases as
we introduce more target objects (Tab. 5), with 1ON being
the best and 5ON being the worst, the agent still performs
considerably well across all n-ONs. The agent achieves a
progress of 95% on 1ON, 87% on 3ON, and 76% on 5ON
for the test set. We note that the progress values on 3ON
and 5ON are comparable to the expected performance if
we were to treat each of the goals independently and reset

the agent after it finds each goal, with expected progress of
95%3 = 86% for 3ON and 95%5 = 77% for 5ON. However,
the actual success rate on 3ON (81%) and 5ON (66%) are
lower than 86% and 77% respectively. This can be explained
by the fact that we keep the step limit fixed at 2500 for 1ON,
3ON, and 5ON, and so the task gets more challenging since
the agent needs to find more objects within the same number
of steps.

D.6. Effect of spatial map on exploration and navi-
gation.

We analyse the importance of having spatial maps for
exploration and navigation when we need to backtrack in
MultiON. We find that when the agent already observes
future goals and store them in the map it can efficiently navi-
gate back to them. Tab. 6 shows the Path Length (PL) and
Accuracy (Acc) with which the agent is able to reach the
kth goal if it was observed (‘Seen’) before (k − 1)th goal
was reached. We notice that for ‘Seen’, the path length is
much shorter in Shortest Path Follower (last row) compared
to PointNav (first row). We also find that Uniform covers
the most area before the first goal has been reached. When
comparing different exploration methods, we find that al-
though the path length varies for ‘Unseen’ goals, it stays
almost unchanged for ‘Seen’ goals.

D.7. Qualitative examples

Fig. 6 shows a rollout of the OracleSem policy with Point-
Nav and Uniform. During the first phase of the rollout, we
can see that the agent keeps exploring the environment since
it has not yet discovered the first goal. Once the agent has
found and navigated to every goal, the episode terminates
successfully.

Fig. 7 shows a rollout of the OracleSem agent on one
of the episodes from the 5ON test set. At each step the
agent receives the egocentric depth and semantic observa-
tions along with the current goal category as inputs (column
1) and builds a top-down semantic map (column 3) from
the egocentric object categories that it observes using the
depth image. The agent switches between the Exploration
and Navigation modes depending on whether it has seen the
current target object. From the example, we see that the
agent mostly explores the environment in the initial phase
of the rollout. Once it starts discovering target objects, it
navigates to them sequentially. Once it is able to successfully
find all 5 objects, the episode terminates.

Fig. 8 and Fig. 9 show rollouts of the PredSem agent
on the 3ON test set episodes with CYL and NAT objects
respectively. Here the agent has access to the RGB and depth
observations and the current goal category as inputs (column
1). The agent predicts the egocentric semantic category of the
objects from the RGB image (column 2 shows the bounding
box for the predicted object) and progressively builds a top-



Dataset Goals# Max
Steps

O M N E Validation Test

Success Progress SPL PPL Success Progress SPL PPL

1)

MultiON 2.0

1ON 2500 GT [5] PN U 96 96 36 36 95 95 35 35
2) 3ON 2500 GT [5] PN U 80 87 35 38 81 87 37 39
3) 5ON 2500 GT [5] PN U 68 78 33 36 66 76 32 36
4) 1ON 500 GT [5] PN U 69 69 34 34 68 68 34 34

5) ObjNav [22] 1ON 500 GT [5] PN U 64 - 30 - - - - -

Table 5. Generalization of MOPA on n-ON. Performance deteriorates as we increase the number of target objects on MultiON, for a fixed
step limit (rows 1-3). We also notice that our approach performs similarly on the Habitat ObjectNav 2022 [22] and MultiON 2.0 1ON val set
(rows 4,5) when we set the step limit to 500 steps, following ObjectNav task setting.

MOPA
First goal (k = 1) Second goal (k = 2) Third goal (k = 3)

Not reached Reached
N

Seen Not seen
N

Seen Not seen

Ns Nn Cov Gr Acc PL Gr Acc% PL Gr Acc% PL Gr Acc PL

PN + Uniform 35 49 37 890 654 73 124 236 27 520 820 725 88 107 95 12 563
PN + ANS 26 72 35 861 620 72 122 241 28 545 785 696 89 106 89 11 649
PN + Frontier 25 167 29 714 523 73 121 191 27 449 629 563 90 111 66 10 545
PN + Stubborn 26 92 30 710 509 72 122 201 28 488 618 550 89 107 68 11 621

FMM + Uniform 30 150 34 678 490 72 130 188 28 697 451 397 88 141 54 12 734

SPF∗ + Uniform 33 110 36 803 563 70 71 240 30 548 742 637 86 70 105 14 594

Table 6. Goal Discovery of kth goal in 3ON. Note: Ns: Number of goals seen but not reached, Nn: Number of goals not seen, Cov: Area
covered (sqm) till reaching 1st goal, N : Total number of goals reached, Gr: Goals reached, Acc: Accuracy (%), PL: Avg path length to
reach kth goal after (k − 1)th goal was reached. Observations: (1) PointNav vs Shortest Path Follower: For ‘Seen’, path length is much
shorter in Shortest Path Follower. (2) Uniform covers most area before the 1st goal was reached. (3) For ‘Seen’ goals, the path length does
not vary much for different exploration methods.

down semantic map (column 4) with the object categories
using depth image. These examples also demonstrate that
the agent mostly explores the environment in the first phase
of the episodes, later switching to the Navigation mode once
it discovers the target objects.

E. ObjectNav experiments
In this section, we report more results on ObjectNav task.

We perform our experiments on both Habitat ObjectNav
2022 and 2021 challenge datasets1. ObjectNav 2022 chal-
lenge dataset is based on HM3D scenes and consists of 6
object categories: chair, couch, potted plant, bed, toilet and
tv. We use HM3D-Sem v0.2 for our experiments. On the
other hand, ObjectNav 2021 challenge dataset is based on
MP3D scenes [3], consists of 21 object categories and con-
tain 2195 validation episodes. In ObjectNav, the agent is
allowed a maximum of 500 steps and the success is mea-
sured as whether the agent is able to navigate to and stop
near any instance of the goal object. More specifically, each
episode contains a list of viewpoints sampled at a distance
of 1m from the goal object bounding box, and the episode is

1https://aihabitat.org/challenge/2022, https://
aihabitat.org/challenge/2021

Method Object
Detection

Exp Nav Validation

Succ SPL

1) OracleSem (Ours) GT Uniform PN 65 29

2) PredSem (Ours) Detic[26] Uniform PN 15 12
3) EmbCLIP[10] CLIP[16] end-to-end w/ DD-PPO 19 9
4) ZSON[12] CLIP[16] end-to-end w/ DD-PPO 15 5
5) CoW[8] OWL[14] Frontier[25] A∗ 7 4

6) CoW[8]
CLIP[16]

+GradRel[6] Frontier[25] A∗ 9 5

7) OVRL[24]* Self-supervised pretraining + ObjectNav finetuning 29 7

Table 7. ObjectNav performance on Habitat ObjectNav 2021
challenge dataset. PredSem with the Detic detector outperforms
recent methods on the SPL metric.

considered to be successful if the agent reaches within 0.1m
of any of these viewpoints.

MOPA performance on ObjectNav 2021 challenge
dataset. Tab. 7 shows that our PredSem achieves better
SPL than the prior works on the 2021 challenge dataset.
We note that both EmbCLIP [10] and ZSON [12] requires
training an action policy. In contrast, our modular approach
makes use of pretrained modules and does not require any
specific ObjectNav training. CoW [8] is also a modular

https://aihabitat.org/challenge/2022
https://aihabitat.org/challenge/2021
https://aihabitat.org/challenge/2021


approach that uses Frontier based exploration and a target-
driven planner based on vision-language models for visual
features. Since the ObjectNav 2021 challenge is focused on
just 21 object categories, we use Detic as our object detector.
Our method (PredSem) is able to outperform CoW signifi-
cantly. PredSem also outperforms OVRL [23], which is a
fully supervised SOTA method, on SPL (while being lower
on success rate).
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Figure 6. OracleSem episode rollout We visualize an episode rollout of the OracleSem agent over time (t). At t = 1, the agent has not yet
observed the current goal (cyan cylinder). It keeps exploring and building the semantic map (third column) until it observes the current goal
and navigates to it at t = 80. This process continues until it finds all the subsequent goals (yellow and pink). The Blue outline indicates that
the agent executed the found action. The agent does not have access to the top-down obstacle map (second column) which is for visualization
only.
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Figure 7. Qualitative results: 5ON. Rollouts of our OracleSem with PointNav and Uniform show that the agent explores over time (t) and
discovers objects and progressively builds the semantic map using egocentric depth observations. The goal sequence is (black, red, yellow,
pink, and finally green,). The top-down obstacle map is for visualization only; this agent does not have access to it. Blue outline indicates
that the agent executed the found action. The agent has a 100% Success, 100% Progress, 39% SPL and 39% PPL in this episode.
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Figure 8. Qualitative results: CYL objects. Rollouts of our OracleSem with PointNav and Uniform show that the agent explores over
time (t) and detects objects (‘Predicted’ column) and progressively builds the semantic map using egocentric depth observations. The goal
sequence is (pink, blue, and finally green). The top-down obstacle map is for visualization only; this agent does not have access to it. Blue
outline indicates that the agent executed the found action. The agent has a 100% Success, 100% Progress, 21% SPL and 21% PPL in this
episode.
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Figure 9. Qualitative results: Natural objects. Rollouts of our OracleSem with PointNav and Uniform show that the agent explores over
time (t) and discovers target objects and progressively builds the semantic map using egocentric depth observations. The goal sequence is
(backpack (black), teddy bear (white), and finally trolleybag (cyan)). The top-down obstacle map is for visualization only; this agent does
not have access to it. Blue outline indicates that the agent executed the found action. The agent has a 100% Success, 100% Progress, 17%
SPL and 17% PPL in this episode.
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