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1. Comparison with Existing TTA methods

Method Inference time

IBNNet [10] 73
DoSe (ours) 872

w/o Self-Distillation 324
w/o Exemplar-based Buffer 548

Table 1. Inference time comparison of DoSe framework on IBN-
Net [10] with different loss variants, Inference time values are in
seconds.

We compare the existing SOTA Test-time Adaptation
methods on the RefineNet [5] pre-trained model trained on
the source (daytime) dataset. Results are reported in Tab. 4.
We compare our proposed DoSewith existing TTA Adapta-
tion methods TENT [16], EATA [8], MEMO [19], SAR [9],
NOTE [3], RoTTA [18], MECTA [4], RATP [6], RMT [2],
MALL [12], ONDA [11], and CoTTA [17]. We consider
four adverse weather conditions such as fog, rain, night and
snow. We consider 10 iterations on ACDC-val [13] dataset.
Our DoSe outperforms existing TTAmethods and improves
the performance of RefineNet [5] by 5.5% better mIoU in
the task of continual test-time adaptation.

2. Ablation study

2.1. Computational cost on C-Driving dataset

We analyze the computational cost of the proposed
DoSe framework, we consider the RefineNet [5] model and
adapt it to 100-overcast images from C-Driving [7] and per-
form continual test-time adaptation for 10 iterations. Re-
sults are reported in Tab. 3. Proposed DoSe framework
adapts to continually changing target environment faster
than existing SOTA method CoTTA [17].

Method Inference time

DeepLabv3+ ResNet101 [1] 110

CoTTA [17] 1080
DoSe (ours) 910

Table 2. Inference time comparison of DoSe framework on Re-
fineNet [5] on C-Driving dataset, Inference time values are in sec-
onds.

Method Inference time

DeepLabv3+ mobilenet V2 [14] 40

CoTTA [17] 350
DoSe (ours) 220

Table 3. Inference time comparison of DoSe framework on
DeepLabv3+ Mobilenet V2 [14] on SHIFT dataset, Inference time
values are in seconds.

2.2. Computational cost on SHIFT dataset

We analyze the computational cost of the proposed
DoSe framework, we consider the DeepLabv3+ mobilenet
V2 [14] model and adapt it to 100-Fog images from SHIFT
dataset [15] and perform continual test-time adaptation for
10 iterations. Results are reported in Tab. 3. Proposed
DoSe framework adapts to continually changing target en-
vironment faster than existing SOTA method CoTTA [17].

2.3. Computational cost - Loss function

We analyze the computational cost of the proposed
DoSe framework, with different individual components of
the total loss function. We consider SOTA DG method IBN-
Net [10] as our base pre-trained model. We took 100 im-
ages from ACDC-snow [13] and apply the total loss func-
tion with and without loss components. Results are reported
in Tab. 1.
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Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Round 1 4 7 10 All

Model+Method Fog Night rain snow Fog Night rain snow Fog Night rain snow Fog Night rain snow Mean
RefineNet [5] 55.9 42.6 44.2 21.5 55.9 42.6 44.2 21.5 55.9 42.6 44.2 21.5 55.9 42.6 44.2 21.5 41.1
• BN Stats Adapt 54.2 41.1 43.9 20.4 53.7 40.7 43.7 20.2 53.6 40.1 43.6 20.1 53.4 39.8 43.5 19.9 39.5
• TENT-continual [16] 57.5 43.1 45.8 22.8 53.8 42.7 42.9 21.3 51.4 41.2 42.6 21.1 50.7 40.4 41.4 20.7 40.1
• EATA-continual [8] 57.8 44.9 46.4 21.7 53.1 44.8 43.7 22.5 52.7 42.3 43.8 22.4 51.1 41.8 42.4 22.8 40.8
• MEMO [19] 59.7 45.2 45.8 22.7 54.8 45.7 44.8 23.7 53.9 44.8 45.6 23.9 52.7 42.7 43.4 34.8 42.5
• SAR [9] 54.6 43.8 43.7 26.8 55.9 45.6 46.3 24.9 55.8 46.5 46.1 24.5 53.9 44.7 45.6 35.5 42.3
• NOTE [3] 52.1 39.7 40.1 27.8 56.7 45.3 46.8 22.1 55.1 44.5 44.4 24.5 53.7 42.8 44.3 34.1 42.1
• RoTTA [18] 50.8 38.9 40.3 25.9 55.1 45.2 45.4 21.9 54.8 44.2 44.5 24.1 50.9 43.1 44.5 34.7 41.5
• MECTA [4] 50.6 37.7 41.1 26.4 54.5 44.8 46.2 20.3 53.7 44.8 44.7 23.7 50.6 42.8 43.6 32.8 41.1
• RATP [6] 51.1 38.3 40.9 25.9 53.9 43.7 45.9 21.1 52.7 43.6 44.4 22.9 51.9 43.2 44.2 33.4 41.3
• RMT [2] 52.4 38.9 40.6 25.1 52.7 44.8 45.7 22.5 52.6 44.5 45.3 23.4 52.9 42.2 43.1 34.5 41.4
• MALL [12] 53.5 39.1 45.1 26.5 51.1 42.8 43.8 24.2 54.3 44.8 47.8 23.9 53.7 44.2 43.1 36.2 42.2
• ONDA [11] 53.1 39.9 45.4 26.1 51.4 42.1 43.1 24.8 55.1 44.2 47.1 23.2 54.2 45.1 44.2 34.8 42.5
• CoTTA [17] 55.2 39.4 45.8 28.9 54.3 43.2 44.2 24.7 56.6 45.5 47.5 24.3 55.3 46.7 46.2 37.1 43.6

• DoSe (ours) 57.4 41.6 46.4 30.2 55.9 45.8 48.8 26.1 58.8 45.9 48.8 25.6 57.8 49.1 47.1 37.3 46.5

Table 4. Comparison of DoSe with existing TTA methods on pre-trained daytime model RefineNet [5]. The experiment setup is described
in the paper.

Time t −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Round 1 4 7 10 All

Model+Method snow rain fog night snow rain fog night snow rain fog night snow rain fog night Mean
DeepLabv3+ ResNet101 [1] 50.6 52.3 67.6 21.9 50.6 52.3 67.6 21.9 50.6 52.3 67.6 21.9 50.6 52.3 67.6 21.9 48.1
• DoSe (ours) 51.4 53.8 68.9 22.3 53.8 54.3 69.6 23.8 55.7 55.6 71.8 25.2 57.9 56.8 73.4 27.9 51.4

Table 5. Ablation study of Proposed framework DoSe using DeepLabv3+ ResNet101 [1] on ACDC [13] dataset with change in order of
sequence. The experiment setup is described in the paper.

(a) Input (b) TENT (c) CoTTA (d) NOTE

(e) Ground truth (f) MECTA (g) RATP (h) DoSe (Ours)

Figure 1. Comparison of our approach, DoSe, with existing SOTA Test-Time Adaptation methods.

3. Qualitative Results
In Fig. 1, we demonstrate the qualitative visual results

of the DoSe and compare the visual results with exist-
ing SOTA Test-time Adaptation methods. Results demon-
strate that DoSe can identify minority classes, such as traf-
fic lights etc., effectively.
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