Towards Domain-Aware Knowledge Distillation for Continual Model Generalization - Supplementary material

Nikhil Reddy¹ Mahsa Baktashmotlagh² Chetan Arora³ ¹UQ-IIT Delhi Research Academy (UQIDAR) ²UQ, Australia ³IIT Delhi, India https://dose-iitd.github.io/

1. Comparison with Existing TTA methods

Method	Inference time
IBNNet [10]	73
DoSe (ours)	872
w/o Self-Distillation	324
w/o Exemplar-based Buffer	548

Table 1. Inference time comparison of DoSe framework on IBN-Net [10] with different loss variants, Inference time values are in seconds.

We compare the existing SOTA Test-time Adaptation methods on the RefineNet [5] pre-trained model trained on the source (daytime) dataset. Results are reported in Tab. 4. We compare our proposed DoSe with existing TTA Adaptation methods TENT [16], EATA [8], MEMO [19], SAR [9], NOTE [3], ROTTA [18], MECTA [4], RATP [6], RMT [2], MALL [12], ONDA [11], and CoTTA [17]. We consider four adverse weather conditions such as fog, rain, night and snow. We consider 10 iterations on ACDC-val [13] dataset. Our DoSe outperforms existing TTA methods and improves the performance of RefineNet [5] by 5.5% better mIoU in the task of continual test-time adaptation.

2. Ablation study

2.1. Computational cost on C-Driving dataset

We analyze the computational cost of the proposed DoSe framework, we consider the RefineNet [5] model and adapt it to 100-overcast images from C-Driving [7] and perform continual test-time adaptation for 10 iterations. Results are reported in Tab. 3. Proposed DoSe framework adapts to continually changing target environment faster than existing SOTA method CoTTA [17].

Method	Inference time
DeepLabv3+ ResNet101 [1]	110
CoTTA [17]	1080
DoSe (ours)	910

Table 2. Inference time comparison of DoSe framework on RefineNet [5] on C-Driving dataset, Inference time values are in seconds.

Method	Inference time
DeepLabv3+ mobilenet V2 [14]	40
CoTTA [17]	350
DoSe (ours)	220

Table 3. Inference time comparison of DoSe framework on DeepLabv3+ Mobilenet V2 [14] on SHIFT dataset, Inference time values are in seconds.

2.2. Computational cost on SHIFT dataset

We analyze the computational cost of the proposed DoSe framework, we consider the DeepLabv3+ mobilenet V2 [14] model and adapt it to 100-Fog images from SHIFT dataset [15] and perform continual test-time adaptation for 10 iterations. Results are reported in Tab. 3. Proposed DoSe framework adapts to continually changing target environment faster than existing SOTA method CoTTA [17].

2.3. Computational cost - Loss function

We analyze the computational cost of the proposed DoSe framework, with different individual components of the total loss function. We consider SOTA DG method IBN-Net [10] as our base pre-trained model. We took 100 images from ACDC-snow [13] and apply the total loss function with and without loss components. Results are reported in Tab. 1.

Time	t -															\longrightarrow	
Round	1				4				7				10				All
Model+Method	Fog	Night	rain	snow	Mean												
RefineNet [5]	55.9	42.6	44.2	21.5	55.9	42.6	44.2	21.5	55.9	42.6	44.2	21.5	55.9	42.6	44.2	21.5	41.1
 BN Stats Adapt 	54.2	41.1	43.9	20.4	53.7	40.7	43.7	20.2	53.6	40.1	43.6	20.1	53.4	39.8	43.5	19.9	39.5
• TENT-continual [16]	57.5	43.1	45.8	22.8	53.8	42.7	42.9	21.3	51.4	41.2	42.6	21.1	50.7	40.4	41.4	20.7	40.1
• EATA-continual [8]	57.8	44.9	46.4	21.7	53.1	44.8	43.7	22.5	52.7	42.3	43.8	22.4	51.1	41.8	42.4	22.8	40.8
• MEMO [19]	59.7	45.2	45.8	22.7	54.8	45.7	44.8	23.7	53.9	44.8	45.6	23.9	52.7	42.7	43.4	34.8	42.5
• SAR [9]	54.6	43.8	43.7	26.8	55.9	45.6	46.3	24.9	55.8	46.5	46.1	24.5	53.9	44.7	45.6	35.5	42.3
• NOTE [3]	52.1	39.7	40.1	27.8	56.7	45.3	46.8	22.1	55.1	44.5	44.4	24.5	53.7	42.8	44.3	34.1	42.1
• RoTTA [18]	50.8	38.9	40.3	25.9	55.1	45.2	45.4	21.9	54.8	44.2	44.5	24.1	50.9	43.1	44.5	34.7	41.5
• MECTA [4]	50.6	37.7	41.1	26.4	54.5	44.8	46.2	20.3	53.7	44.8	44.7	23.7	50.6	42.8	43.6	32.8	41.1
• RATP [6]	51.1	38.3	40.9	25.9	53.9	43.7	45.9	21.1	52.7	43.6	44.4	22.9	51.9	43.2	44.2	33.4	41.3
• RMT [2]	52.4	38.9	40.6	25.1	52.7	44.8	45.7	22.5	52.6	44.5	45.3	23.4	52.9	42.2	43.1	34.5	41.4
• MALL [12]	53.5	39.1	45.1	26.5	51.1	42.8	43.8	24.2	54.3	44.8	47.8	23.9	53.7	44.2	43.1	36.2	42.2
• ONDA [11]	53.1	39.9	45.4	26.1	51.4	42.1	43.1	24.8	55.1	44.2	47.1	23.2	54.2	45.1	44.2	34.8	42.5
• CoTTA [17]	55.2	39.4	45.8	28.9	54.3	43.2	44.2	24.7	56.6	45.5	47.5	24.3	55.3	46.7	46.2	37.1	43.6
• DoSe (ours)	57.4	41.6	46.4	30.2	55.9	45.8	48.8	26.1	58.8	45.9	48.8	25.6	57.8	49.1	47.1	37.3	46.5

Table 4. Comparison of DoSe with existing TTA methods on pre-trained daytime model RefineNet [5]. The experiment setup is described in the paper.

Time	t															\longrightarrow	
Round	1 4								7				All				
Model+Method	snow	rain	fog	night	Mean												
DeepLabv3+ ResNet101 [1]	50.6	52.3	67.6	21.9	50.6	52.3	67.6	21.9	50.6	52.3	67.6	21.9	50.6	52.3	67.6	21.9	48.1
• DoSe (ours)	51.4	53.8	68.9	22.3	53.8	54.3	69.6	23.8	55.7	55.6	71.8	25.2	57.9	56.8	73.4	27.9	51.4

Table 5. Ablation study of Proposed framework DoSe using DeepLabv3+ ResNet101 [1] on ACDC [13] dataset with change in order of sequence. The experiment setup is described in the paper.

Figure 1. Comparison of our approach, DoSe, with existing SOTA Test-Time Adaptation methods.

3. Qualitative Results

In Fig. 1, we demonstrate the qualitative visual results of the DoSe and compare the visual results with existing SOTA Test-time Adaptation methods. Results demonstrate that DoSe can identify minority classes, such as traffic lights etc., effectively.

References

- Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation. In *Proceedings of the European Conference on Computer Vision (ECCV)*, September 2018. 1, 2
- [2] Mario Döbler, Robert A Marsden, and Bin Yang. Robust mean teacher for continual and gradual test-time adaptation.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7704–7714, 2023. 1, 2

- [3] Taesik Gong, Jongheon Jeong, Taewon Kim, Yewon Kim, Jinwoo Shin, and Sung-Ju Lee. NOTE: Robust continual test-time adaptation against temporal correlation. In Advances in Neural Information Processing Systems (NeurIPS), 2022. 1, 2
- [4] Junyuan Hong, Lingjuan Lyu, Jiayu Zhou, and Michael Spranger. Mecta: Memory-economic continual test-time model adaptation. In *The Eleventh International Conference* on Learning Representations, 2023. 1, 2
- [5] Guosheng Lin, Anton Milan, Chunhua Shen, and Ian Reid. Refinenet: Multi-path refinement networks for highresolution semantic segmentation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 1925–1934, 2017. 1, 2
- [6] Chenxi Liu, Lixu Wang, Lingjuan Lyu, Chen Sun, Xiao Wang, and Qi Zhu. Deja vu: Continual model generalization for unseen domains. *arXiv preprint arXiv:2301.10418*, 2023. 1, 2
- [7] Ziwei Liu, Zhongqi Miao, Xingang Pan, Xiaohang Zhan, Dahua Lin, Stella X. Yu, and Boqing Gong. Open compound domain adaptation. In *IEEE Conference on Computer Vision* and Pattern Recognition (CVPR), 2020. 1
- [8] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui Tan. Efficient testtime model adaptation without forgetting. In *The International Conference on Machine Learning*, 2022. 1, 2
- [9] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen, Yaofo Chen, Peilin Zhao, and Mingkui Tan. Towards stable test-time adaptation in dynamic wild world. In *Internetional Conference on Learning Representations*, 2023. 1, 2
- [10] Xingang Pan, Ping Luo, Jianping Shi, and Xiaoou Tang. Two at once: Enhancing learning and generalization capacities via ibn-net. In *Proceedings of the European Conference on Computer Vision (ECCV)*, pages 464–479, 2018. 1
- [11] Theodoros Panagiotakopoulos, Pier Luigi Dovesi, Linus Härenstam-Nielsen, and Matteo Poggi. Online domain adaptation for semantic segmentation in ever-changing conditions. In *European Conference on Computer Vision (ECCV)*, 2022. 1, 2
- [12] Nikhil Reddy, Abhinav Singhal, Abhishek Kumar, Mahsa Baktashmotlagh, and Chetan Arora. Master of all: Simultaneous generalization of urban-scene segmentation to all adverse weather conditions. In *Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23– 27, 2022, Proceedings, Part XXXIX*, pages 51–69. Springer, 2022. 1, 2
- [13] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Acdc: The adverse conditions dataset with correspondences for semantic driving scene understanding. *arXiv preprint arXiv:2104.13395*, 2021. 1, 2
- [14] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 4510–4520, 2018. 1

- [15] Tao Sun, Mattia Segu, Janis Postels, Yuxuan Wang, Luc Van Gool, Bernt Schiele, Federico Tombari, and Fisher Yu. Shift: a synthetic driving dataset for continuous multi-task domain adaptation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 21371–21382, 2022. 1
- [16] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully test-time adaptation by entropy minimization. *arXiv preprint arXiv:2006.10726*, 2020. 1, 2
- [17] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual test-time domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7201–7211, 2022. 1, 2
- [18] Longhui Yuan, Binhui Xie, and Shuang Li. Robust testtime adaptation in dynamic scenarios. In *Proceedings of* the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15922–15932, 2023. 1, 2
- [19] M. Zhang, S. Levine, and C. Finn. MEMO: Test time robustness via adaptation and augmentation. 2021. 1, 2