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A. Preliminary of Diffusion Models
Diffusion models consist of a forward diffusion process

progressively adding Gaussian noise to a data point and a re-
versed denoising process generating a data point from pure
random noise:

q(x1:T |x0) =

T∏
t=1

N (xt−1;
√
αtxt−1, (1− αt)I), (1)

where αt are hyperparameters of the noise schedule. The
forward process can also be marginalized at each step as

q(xT |x0) = N (xt;
√
γtx0, (1− γt)I), (2)

where γt =
∏t′

t α′
t.

Using the reparameterization trick, the forward diffusion
process can be formulated as stepwise operations

z := (xT ⊕ ϵT ⊕ · · · ⊕ ϵ1) ∼ N (0, 1),

xt−1 = µT (xt, t) + σt ⊙ ϵt, t = T, ..., 1,
(3)

where ⊕ denotes concatenation operation, and the Gaussian
parameterization provides that

µ =

√
γt−1(1− αt)

1− γt
x0 +

√
αt(1− γt−1)

1− γt
xt,

σ2 =
(1− γt−1)(1− αt)

1− γt
.

(4)

B. Additional Experiment Results
B.1. Random Sampling Color Editing

Fig. 1 shows another example that our model generates
content-aware output based on different patches cropped
from the same raw image as the input. Given the same
style latent noise z, our model performs consistent color

*Part of this work was done when Yixuan was an intern at Adobe Re-
search.

editing on different input patches, as well as adapts to the
specific semantics and structures of the input. For z1 and
z2, the patches with sky only always have the most dramatic
and artistic colors of blue and dark green. And when they
contain more buildings, street views and persons, the ex-
treme colors are mainly constrained in the sky area, while
the other objects show shallower shades of them as being
illuminated and reflected under the certain weather condi-
tions. z3 provides a special case: our model also gener-
ates fancy colors on a complicated scene, as long as it looks
harmonic (this background shares the similar color across
buildings and the ground, and it also depends on the per-
son’s clothing). On the contrary, when the patches become
simpler without abundant objects in the scene, such a pink
filter doesn’t fit well and our model also applies less exag-
gerated colors on them.

B.2. Exemplar-based Color Editing

Fig. 2 display more qualitative results of exemplar-based
image color editing. In each subfigure the first row is man-
aged to have identical visual output from three different
models as the reference. And then the same style latent vec-
tor is applied to other new input images in the below rows.

In subfigure (a), the reference editing style is to enhance
the brightness and contrast. But because the reference im-
ages have slight green color tone as their content, SpaceEdit
applies a green filter to all kinds of other input images, turn-
ing other ground (2nd row), wall (3rd), flower (4th row) and
sky (5th row) greener. Our joint model faithfully follow the
reference editing.

In subfigure (b), the reference editing style is also to em-
phasize the contrast and lifting the brightness. Our joint
model is the only one to successfully preserving and darken
the original color: blue sky becomes deeper blue (2nd row),
green grass becomes more solid green (3rd row), and etc.
SpaceEdit learns a not pure transform that contains the red
and yellow color in the reference image pairs, and thus turn-
ing blue sky and green grass even shallower by combining
the complementary colors and cancelling each other out.
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Figure 1. Additional qualitative results of random sampling generation on different patches cropped from the same image.

In subfigure (c), the reference editing style is to darken
the background while the foreground objects remain the
original brighness as highlight. SpaceEdit and the vanilla
LDM fail to keep the trees and leaves in a good lighting
(2nd and 3rd rows). Besides, they also dye the waterfall
into blue. Our joint model follows the reference strictly and
produces clear foreground with details visible.

In subfigure (d), the reference pairs largely enhance the
raw image with more vivid and vibrant colors, especially
orange, as well as address the contrast between warm and
cold colors. Our joint model executes the same style to
other input images with distinctive promotion. The vanilla
LDM has the similar effect but less outstanding. SpaceEdit
instead completely misunderstands the target direction and
yield unappealing results.

B.3. Language-Guided Color Editing

More language-guided image color editing results are
shown in Fig. 3. In the unmasked task, our model gener-
ates more solid and brighter colors on the mountain, tree
and grass, sky and river, and flower. Please especially note
the dark night case (3rd column), where SpaceEdit edits it
into black background but still with a shot of white moon-
light. Our model instead turning it into dark blue without
obvious source of direct light beam, rendering a realistic na-
ture scene. In the masked task, our model’s output are also
better aligned with both the text prompts and the original
texture of the leaves. Our white leaves are more solid, blue
leaves are more realistic without reflecting white highlight,
and yellow leaves are purer without slight shift to green as
of SpaceEdit.

C. Content-Awareness Metrics
To quantitatively measure and compare the content-

awareness property across multimodal generative models,

we propose a novel framework of metrics based on the cor-
relations between the input image’s content and their output
edit styles given a certain set of input noise. We name it
Content-Awareness Metrics (CAMs), and it has three vari-
ants as shown in Fig. 4, i.e. CAM-1, CAM-2 and CAM-3.

In brief, we first generate output images given a set of in-
put images and a set of style latents. CAM-1 calculates the
diversity of the output images given one certain style latent.
CAM-2 calculates the correlation between the input images’
contents and the output images’ styles given the same style
latent, and CAM-3 calculates the correlation between the in-
put images’ contents and the distributions of output images’
styles given the same set of style latents.

C.1. Column Diversity

The currently widely used diversity in the generative area
is calculated over the set of various output images given one
certain input image and different random noise for styles.
Calculating the mean pairwise distance among these output
images indicate the variation range across the learned style
latent space. Inspired by but on the contrary to this, we
focus on how the model performs given the same random
noise and various input images. This reflects how the model
output adapts to different input images according to their
specific content and semantics.

Fig. 4 visualizes the matrix of input images, random
latent noise and output images. The conventional diver-
sity is measured along a row horizontally, while our col-
umn diversity is measured along a column vertically. For-
mally, given a set of input images yi=1,...,M and a set of
input noise zj=1,...,N , the output images are generated as
xij = Gen(yi, zj), where Gen is the generative model.
Then the conventional row diversity is typically calculated
over the output images x1j = Gen(y1, zj) given a fixed



Figure 2. Additional qualitative results of exemplar-based color editing.

input image x1 as

Diversityrow =
2

N(N + 1)

N∑
j,k

LPIPS(x1j , x1k),

or Diversityrow = σ{x1j}|Nj=1,

(5)

where LPIPS represents the distances between the feature
maps of two images calculated by a pretrained neural net-
work, and σ refers to the standard deviation in the pixel
space.

By contrast, our column diversity focuses on the images



Figure 3. Additional qualitative results of language-guided color
editing.

generated by different input images with a fixed noise, i.e.
xi1 = Gen(xi, z1), i = 1...M . It is the first and most basic
variant CAM-1 can be generally formulated as:

sij = Encstyle(xij |yi),
CAM 1 := Diversitycol

=
2

M(M + 1)

M∑
i,k

dist(si1, sk1),

(6)

where Encstyle is a designated pretrained style encoder, and
dist refers to a form of distance measurement such as L1 or
L2 norm or cosine distance etc.

Note that a core challenge here is to solely represent an
image’s style properly. In Eq. 5, this problem is smartly
bypassed by only calculating the output images from the
same input image, which share all the same input content
and structure naturally. Unfortunately so far there doesn’t
exist a widely-acknowledged method or model off the shelf
to extract the pure style from an image regardless of its con-
tent and structure broadly applicable for most tasks. For our
image color editing task in particular, we set up a pipeline to
adopt a neural network to serve as Encstyle and train it on
our specific data and labels to serve as an approximation.
This is illustrated in details in Sec. C.3.

Figure 4. Illustration of our proposed framework of metrics for
content-awareness in MMI2IT tasks. Conventional diversity is cal-
culated over each row, measuring the output various given differ-
ent noise for the same image. Our proposed metrics are calculated
over each column to reflect how the same latent noise have adap-
tive editing style for different input contents. Sec.C in details nar-
rates the whole framework and complete implementations.

C.2. Correlation between Content and Style

As a univariate criterion, the column diversity or CAM-
1 doesn’t incorporate the relationship between the output
styles and the input content. While its zero value repre-
sents no content-awareness, a big value either just indicates
the output styles are completely haphazard and even harms
the physical meaning of the same input noise vector. So
we further measure the correlation between the input image
content and the output editing style. Since these two repre-
sentations are not in the same latent space, we alternatively
simplify the objective to first calculating the pairwise dis-
tances among themselves respectively, and then measuring
the correlation between the two sets of distances. Following
the same notations in Eq.6, CAM-2 is calculated as

ci = Enccontent(yi),

CAM 2 := CorrMi=1(si1, ci),

:= CorrMi,k=1(dist(si1, sk1),dist(ci, ck)),

(7)

where Encstyle is a designated pretrained content encoder,
and Corr refers to a form of correlation between two sets of
univariate samples. Similarly, it is also a challenge to define
and prepare a proper and accurate content encoder for many



or one task. Its details are described in Sec. C.3.
Furthermore, we regard the output editing styles

{sij}|Nj=1 of a single input image yi given a set of input
random noise {zj}|Nj=1 as a distribution with multiple sam-
pling. The correlation between these distributions in the
form of their pairwise divergences and the input content in
the form of their pairwise distances then reflects the content-
awareness in a deeper level. Formally, the CAM-3 metric in
Fig. 4 is calculated as

CAM 3 := CorrMi=1({sij}|Nj=1, ci),

:= CorrNi,k=1(Div({sij}|Nj=1, {skj}|Nj=1),

dist(ci, ck)),

(8)

where Div refers to a form of divergence between two dis-
tributions.

In addition, please be advised that it is still not always the
bigger the better for CAM-2 and CAM-3, because there also
exist some commonly welcomed color editing styles shared
across different input content clusters. A too big value i.e.
an over high correlation with exclusive editing styles for
certain input content may imply the model overfitting on
the ground truth and even mode collapse. A comparable
value to the ground truth target images would be a proper
reference.

C.3. Content and Style Encoders

In practice, it is challenging to acquire good representa-
tions for the content of an input image and the color editing
style of a pair of input and output images. Their defini-
tions are ambiguous and include various aspects compre-
hensively, and also depend on specific tasks and objectives.
Inspired by FID [2], we hire a pretrained Inception-v3 [3]
model for its last layer’s output before Softmax, i.e. the
same feature vector of the FC layer of dimension 2048 used
in FID to use as our content representation.

On the other hand, it’s not trivial to extract the pure edit-
ing style representation completely out of the content and
structure even given a pair of the input and output images.
For example, the direct difference between individual rep-
resentations of the input and output images still contains
strong information about the main content and structure of
the images (e.g. plain difference in RGB space, or LPIPS
as of difference between a set of feature maps). More fun-
damentally, this is because the definition of styles remain
ambiguous, lacking details and highly dependent on spe-
cific tasks, and the labels are limited and supervised models
are so affected. We cannot leverage any existing generative
models such as StyleGAN either as we’re setting an objec-
tive criterion to fairly assess them

To address this problem, inspired by [4] that trains a
model specifically for painting art style classification and
proposes art-FID, we train a Inception-v3 model from

scratch on our own labels for the image color editing task.
These labels are the ground truth color adjustment slider
values that user applied in the Lightroom software. The
model takes in two concatenated images as the input and
output pair to predict the ground truth slider values, and we
then use the same last feature vector of 2048 dimensions
to represent the color editing style. This aligns with the
standard FID feature vector well in shape and value range
when calculating their distances and correlations, although
not that they are still two different latent space and cannot
be operated together natively.

C.4. Implementations

We use L2 distance for all dist(·, ·) between two vectors
u and v in Eqs. 6, 7 and 8:

dist(u, v) = ∥u− v∥2. (9)

We choose Wasserstein distance to represent the diver-
gence between two distributions {ui}i and {vi}i in Eq. 8,
assuming they are the distributions of two random variables
µ and υ:

Div({ui}i, {vi}i) := Wp(µ, υ)

=

(∫ 1

0

|F−1
µ (α)− F−1

υ (α)|pdα
) 1

p

,

(10)

where F−1 is the inverse cumulative distribution function
(CDF), and we choose p = 2 as the power or moment. Be-
cause both our content and style vectos are of dimension
d = 2048 > 1, we in practice calculate the sliced Wasser-
stein distance [1] by randomly projecting the samples onto
a unit sphere first:

Div({ui}i, {vi}i) := SWp(µ, υ)

=

(∫
Sd−1

Wp
p (µ

θ, υθ)dθ

) 1
p

=

(∫
Sd−1

∫ 1

0

|F−1
µθ (α)− F−1

υθ (α)|pdαdθ
) 1

p

,

(11)

where Sd−1 is the unit sphere of dimension d− 1.
We select the F-test algorithm for linear regression to

calculate Corr(·, ·) in Eqs. 7 and 8. In particular, we first
calculate the Pearson correlation coefficient:

ρX,Y =
Cov(X,Y )

σXσY

=
E(X − µX)(Y − µY )

σXσY
,

(12)



Table 1. The quantitative results of the proposed Content-Awareness Metrics (CAMs). In the 3rd Style column, “random” refers to random
perturbations added to the image data, and “big” and “small” refers to the scale of the perturbation added. “same” refers to a same
deterministic perturbation added to all data samples. The validation section shows our proposed metrics are consistent with the original
data and additional perturbations. The model section shows that our best model with joint auxiliary tasks outperforms other competitors
on these metrics.

Experiments Content Style CAM-1↑ CAM-2 CAM-3

F-stat↑ p-val↓ F-stat↑ p-val↓

Validations

raw content target content - 21686. 0. - -

raw raw - 13.093 0.0141 - -
raw target - 34.665 0.0162 - -
target target - 29.950 0.0194 - -
target raw - 14.843 0.0134 - -
raw raw + random big - 18.253 0.014 - -
raw target + random big - 22.178 0.0125 - -
raw raw + random small - 13.504 0.0165 - -
raw target + random small - 31.490 0.0126 - -
raw raw + same - 16.050 0.0135 - -
raw target + same - 27.228 0.0136 - -

Models

raw SpaceEdit (60k) 0.2467 15.093 0.0181 2.4619 0.0243

raw SpaceEdit 0.2816 16.257 0.0122 2.9985 0.0253

raw Ours LDM baseline 0.3571 21.553 0.0148 4.9446 0.0204

raw Ours LDM Joint L1 [main] 0.5767 28.343 0.0142 7.1684 0.0278

and then convert it into F-stat and p-val:

Corr(X,Y ) := FX,Y =
ρ2X,Y

1− ρ2X,Y

· n− k − 1

k
,

pX,Y = 1− F(k,n−k−1)(|FX,Y |),
(13)

where n is the number of samples, k is the number of
features (1 here as our X and Y are both distances), and
F(k,n−k−1) is the CDF of the F-distribution with (k, n −
k − 1) degrees of freedom. Here n is the number of sam-
ples for X , i.e. the number of pairs for distances used, and
k is the dimension of Y , i.e. 1 as it is distance. Although the
main purpose of this metric is to measure linear correlation,
we notice that it also performs well to distinguish the prop-
erty of monotonically increasing for a mapping f : X → Y
relatively, that is, to reflect how the distance between two
output styles are correlated with the distance between their
corresponding input content.

C.5. Experiments and Results

We randomly sample 5000 pairs of raw images and their
output to execute the above pipelines as one run, and con-
duct 16 individual runs for average. The quantitative results
are listed in Tab. 1.

We first design and perform some preliminary experi-
ments to validate the consistency and rationality of our pro-

posed metrics. We calculate the metrics for the ground truth
raw and target pairs, as well as exchanging or duplicating
them, and applying various types of perturbations with dif-
ferent scales on them. It shows that our metrics are well
consistent with the hypotheses that in the original data from
community users, the edited images follow some patterns
according to their original content and semantics, while the
raw images have quite arbitrary shooting environment of
color tones and lighting etc. And different scales of per-
turbations lead to corresponding scales of impacts on our
metrics’ values.

Then the comparison among our proposed models, its
baseline models and previous SOTA methods demonstrates
that our joint model outperforms all other competitors. Our
ablation models also have intermediate values between the
previous SOTA and our final best model.

D. Latent Noise Space Analyses

D.1. Purity of Color Style Latent

To examine what is learned in our color editing style la-
tent, we conduct an experiment based on the paired image
color editing transfer task, but both the source and target
reference images input to the DPM-Encoder are the edited
image, and the acquired color editing style is applied on a



Figure 5. Visualizations of the purity of our learned color style latent. (c) = (b) ⊖ (a) ⊕ (a), proving the reconstruction ability of our model.
(d) = (b) ⊖ (b) ⊕ (a), indicating that our model has learned the ideal identity transform from identical source and target images.

new raw image. Ideally, it is expected not to transfer any
color style information as the reference pair contains only
identity transform.

Fig. 5 displays the results. Here columns (a) and (b) are
the original raw and edited images from the dataset, and col-
umn (c) is a reconstruction of (b) by applying the inverted
color style from the pair of (a) and (b) back to (a) again.
It shows that our model is able to produce faithful recon-
struction on both content structure and color style. Then we
invert (b) over itself as instructed above, to acquire a corre-
sponding style latent. And we apply this style to (a) again
to generate column (d). It shows that (d) is identical to (a).
This demonstrates that our model has learned a well pure
identity transform when the source and target images are
identical in the reference pair, which is independent to their
concrete styles and content etc.

This implies one of the reasons of our model’s improved
content-awareness: our model’s latent style noise is pure
on the color editing transforms and differences only, and
will not introduce any particular style or content them-
selves from the source or target reference images. For
example, transferring an editing of increasing brightness
from a pair of red images to a new raw green image with
our model won’t bring the base red tone to mess up the
original green color. This also contributes to our model’s
semantic-adaptive harmonic output when sampling from

random noise: since our latent style noise space learns
the color editing transforms only, it processes the training
data from the right perspective of color style differences
instead of color styles. Then our model learns the realis-
tic color editing transforms that community users actually
performed, based on their frequencies and correlations with
various input content. Learning impure editing styles entan-
gled with their own color tones etc. will mess up and fail to
capture the right patterns in real data.

D.2. Latent Noise Interpolation

We further perform linear interpolation over the learned
latent noise space. Our models are based on a standard la-
tent diffusion model, and the size of their latent noise space
is (T + 1) × 3 × r

f × r
f , where T = 100 is the num-

ber of diffusion steps using a respaced DDPM scheduler,
r = 256 is the image resolution and f = 4 is the compres-
sion factor. This space is significantly bigger than previous
GAN-based methods such as StyleGANs. We doesn’t adopt
DDIM schedulers where σ = 0 and thus no additional noise
beside the initial t = T step, to make sure the generative
quality without compromisation.

To keep the interpolated noise also standard Gaussian
distribution, we calculate it by

zλ =
√
λ · z0 +

√
1− λ · z1 ∼ N (0, 1), (14)



for every timestep t (omitted), where z0, z1 ∼ N (0, 1) are
the two reference noise vectors at that step. The visual re-
sults are shown in Fig. 6. It displays gradual changes from
one end to the other, which reveals the arithmetic property
of our model and potential benefits for more downstream
applications such as image color editing style clustering and
retrieval.

E. Visualizations of Auxiliary Color Restora-
tion Tasks

We visualize the output of our proposed auxiliary color
restoration tasks during joint training in Figs. 7 and 8, for
the luminance input (Y channel, grayscale) and chromi-
nance input (UV channels) respectively. All images are
generated with our jointly trained model, i.e. the output only
depends on the input image type from the same model. Note
that we don’t measure their performance but only leverage
them for assistance. They reveal significantly high diver-
sity and content-awareness, which boost our model in these
aspects for our main color editing task.

For example, in Fig. 7 about chrominance, the color of
sky vary largely at sunrise or sunset (6th, 11th, 13th and
15th rows), but its color remains within the shadows of blue
or green when the lighting is stable (5th, 7th and 12th rows),
given all the same other circumstances including the out-
door natural landscape scenes and objects. The color of per-
sons also keeps in a certain range, while the backgrounds
and other artificial objects have much more diverse possi-
bilities (3rd, 5th, 7th, 10th, 12th, 15th and 16th rows). For
buildings (1st, 3rd and 14th rows) and trees/plants (2nd, 4th
and 16th rows), the color diversity is adaptive to their cate-
gories and materials in particular.

Similar observations also emerge in Fig. 8 about lumi-
nance. The brightness for sunrise or sunset has the broadest
range (6th, 11th, 13th and 15th rows), while it gets limited
when the semantics imply that the environment lighting is
stable (7th, 8th and 12th rows). The 5th row is a compli-
cated case where the sun is covered by foreground persons.
Then the outputs are more artistic in sky colors, while still
preserving the persons not as exaggerated. For pure person
portrait with a close-up shot on face (10th row), it varies
in a restrained range to keep the face color reasonable, plus
a special artistic case i.e. grayscale effect additionally. For
buildings it also depends on their specific styles, e.g. mod-
ern buildings (1st row) differ from old buildings (3rd row)
given the similar structures and layouts (buildings around
with sky in the top middle).
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Figure 6. The interpolation results of our model. Two random Gaussian noise vectors are sampled to generate the first and last column,
and their interpolated noise are used to generate the intermediate columns. It shows gradual changes from one color style to the other and
indicates the arithmetic property of our learned latent noise space.



Figure 7. The output of the colorization (chrominance completion) task as one of our proposed auxiliary color restoration tasks. Note
that only the 2nd column Input Y is the actual input. It shows that our model benefit from this auxiliary task to enhance the capability of
producing more diversified and semantic-adaptive color, including the ones similar to the GT. See more details in Sec. E.



Figure 8. The output of the luminance completion task as one of our proposed auxiliary color restoration tasks. Note that here only the 2nd
column Input UV is the actual input. It shows that our model benefit from this auxiliary task to enhance the capability of producing more
diversified and semantic-adaptive lighting, including the ones similar to the GT. See more details in Sec. E.


