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1. Dataset details
1.1. Visualization System during capture

We leverage a visualization system developed by Spec-
tacular AI SDK [1] to inspect the integrity of the point cloud
reconstructed from the captured RGB-D images in real-time
when using Kinect. In Figure 1, we show an example of the
visualization interface.

Figure 1. The visualization system. The colored area indicates
successful capture, while the empty area is repeatedly scanned by
checking the integrity of the point cloud.

1.2. The details of each room

In Figure 2, we show an example image of each room.
The MuSHRoom is a room-scale dataset with various
styles, colors, illumination, and objects, demonstrating real-
world challenges. In Table 1, we show the details of the cap-
tured rooms, including the room names, scales, and camera
settings.

When using COLMAP [8] to calculate the globally op-
timized pose for activity and koivu room captured with
iPhone sequence, COLMAP failed to calculate accurate
poses, so we walked around twice and captured a long se-
quence. We cut the long sequence from the middle and use
the original Polycom of the first circle for training and the

Scene Scale (m)
Exposure

time
(µs)

White
Balance

(K)
Brightness Gain

coffee room 6.3 × 5 × 3.1 41700 2830 128 130
computer room 9.6 × 6.1 × 2.5 33330 3100 128 255

classroom 8.9 × 7.2 × 2.8 33330 3300 128 88
honka 6.1 × 3.9 × 2.3 16670 3200 128 128
koivu 10 × 8 × 2.5 16670 4200 128 128

vr room 5.1 × 4.4 × 2.8 8300 3300 128 88
kokko 6.7 × 6.0 × 2.5 133330 4000 128 255
sauna 9.9 × 6.5 × 2.4 Auto 3300 Auto Auto

activity 12 × 9 × 2.5 50000 3200 128 130
olohuone 19 × 6.4 × 3 Auto 3600 Auto Auto

Table 1. The parameters of each room in our datasets. We intro-
duce the room names, room scales and camera parameters.

frames in the second circle for testing.

2. Comparison methods

This section introduces the baseline methods we have
compared with.
Volumetric Fusion. Volumetric Fusion [4] proposes to
fuse depth from multiple views into the signed distance
functions (SDF) and then extract the mesh model using
marching cubes (MC) [6]. We use the implementation from
Open3D [16], then further cluster the connected triangles
and clean small clusters. Since the novel view images can
only be synthesized from the textured mesh, the appearance
has a large domain gap with the real images.
GO-Surf. Go-Surf [10] represents geometry and color fea-
tures with the multi-resolution feature grid and decodes
these representations into SDF and RGB with two shallow
MLP networks. It improves speed and accuracy by simulta-
neously optimizing the feature volumes, decoders, and cam-
era poses.
Nerfacto. Nerfstudio [9] is an end-to-end workflow that en-
capsulates various state-of-the-art NeRF techniques, which
is friendly to user-collected real-world data. Nerfacto is one
of the NeRF pipelines assembled by Nerfstudio that com-
bines components from practical novel methods to balance
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Figure 2. The MuSHRoom dataset. Our dataset contains ten rooms with different shapes, colors, illumination, and objects. We show an
image example of each room captured by Kinect.

speed and quality. With a proposal sampler [3], scene con-
traction [3], and density field, Nerfacto can achieve immer-
sive novel view synthesis quality even with real-world noisy
data. However, the density field is optimized exclusively for
visual consistency, which means that this model sacrifices
geometry accuracy and creates occupancy regions to sup-
port the volumetric rendering even in parts of the space that
are not occupied by the underlying surface. The surface will
be predicted with the help of the density rather than accurate
zero thickness surface [7]. When the surface is not sharp
enough, the consistency of the predicted depth and normal
from multiple views cannot be guaranteed, leading the 3D
model extracted from the density field to become ambigu-
ity [12] when representing mesh with truncated signed dis-
tance function (TSDF). In our evaluation, we use Poisson
surface reconstruction [5] to extract the mesh model.
NeuS-facto. SDFStudio [13] is a unified framework that
focuses on 3D reconstruction based on Nerfstudio, com-
bined with recent techniques designed from implicit surface
reconstruction. Similar to Nerfacto, we chose NeuS-facto
with components of proposal network, multi-resolution fea-
ture grid, SDF output, and background modeling [14]. SDF
output can largely improve the geometry accuracy, but it
constrains the occupancy predicting flexibility, which im-
pedes the learning of details in appearance during volume
rendering [12].

3. Per-room Evaluation

3.0.1 Implementation Details:

For GO-Surf, Nerfacto, NeuS-facto, and our method, we
train each model with 10k, 40k, 60k, and 70k iterations
on NVIDIA RTX-2080Ti separately. We train each model
without camera optimization. For Go-Surf, when training
with iPhone collected data, we set ADAM optimizer with a
learning rate of 1×10−1 for MLP decoders, and the weights

for rgb, depth, sdf, fs loss are 10 times of the default one.
When training Nerfacto, NeuS-facto and our method, we
did not include camera pose optimization. Other settings
are the same as the default setting reported in each paper.
When synthesising pseudo images/depth for our data aug-
mentation strategy, we set the interplation number n to be 3
for kinect device and 4 for iPhone device. During data aug-
mentation, we render pseudo RGB images from Nerfacto,
and pseudo depths from mesh reconstructed by NeuS-facto.
These two methods produce the relatively best synthesis and
mesh results in our comparison.

3.1. Metrics

Metrics for comparing reconstruction We compare the
mesh reconstruction ability from both the accuracy and
completeness aspects. As introduced in [10], we measure
accuracy (Acc), completion (Comp), Chamfer distance (C-
ℓ1), normal consistency (NC), and F-score metrics when
evaluating reconstruction results. Acc refers to what pro-
portion of the predicted point cloud aligns with a refer-
ence point cloud with a certain threshold. Comp refers to
how well a reconstructed mesh represents the full reference
mesh. C- ℓ1 distance measures the similarity between the
predicted point cloud and the ground truth point cloud. It
computes the average distance from a point in one point
cloud to the nearest point in the other point cloud, measur-
ing how closely two point clouds are in space. NC refers to
the alignment of normals between two surfaces, represent-
ing the influence of the orientation of the surface. F-score
used to balance the percison P and recall R by

Fscore =
2PR

P +R
(1)

Precision comes from the percentage of Acc within a
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Figure 3. Effect of our culling protocol. On the left is a predicted
mesh of the koivu room, reconstructed from a Kinect sequence
and have culled using the prior culling protocol. Notably, there re-
mains redundant mesh, as highlighted in the yellow square. How-
ever, when culled based on the contour of the reference mesh’s
projections, the mesh is cleanly trimmed.

threshold:

P (ti) =
1

n

n∑
j=1

I (Accj ≤ ti) (2)

Recall comes from the percentage of Comp within a thresh-
old:

R (ti) =
1

n

n∑
j=1

I (Compj ≤ ti) (3)

In our comparison, we set the threshold ti to 5cm.
Metrics for comparing novel view synthesis

We use PSNR, SSIM [11], and LPIPS [15] to mesh the
pixel and feature distances between synthesized images and
real images.

3.2. Mesh culling protocol

In the previous method [10], the mesh is culled based
on several criteria: first subdivided to have the maximum
edge length below 1.5cm and then culled by whether the
parts are visible within the camera’s frustum, and if there’s
valid depth in the corresponding region, and if they are oc-
cluded. However, we noticed that for some non-rectangular
rooms without precise boundaries, not all redundant mesh
parts are effectively culled. For instance, as depicted in Fig-
ure 3, the mesh takes on an ”L” shape. The exterior mesh is
not culled because it can be observed through a transparent
window door. Therefore, meshes culled using the previous
protocol can lead to imprecise comparison results. Here, we
propose a new culling method that uses the boundary of the
projection of the reference mesh to further cull the predicted
mesh. In our culling protocol, after aligning the predicted
mesh to the reference mesh, we project the reference mesh
into the xy, xz, and yz planes. To avoid the boundaries be-
ing too close to the predicted mesh and causing some incor-
rect cuts, we first dilate the projections. Then we detect the

contours of three projections and cut the parts of the pre-
dicted mesh that are outside of the contours. For meshes
reconstructed from Kinect sequences, we applied both the
previous culling protocol and our cutting method. This was
due to their non-rectangular geometry and unbounded ar-
eas. For meshes derived from iPhone sequences, we only
employed our culling protocol. This is because the granu-
larity of these meshes is too coarse to accurately determine
if regions are within the camera’s frustum, occluded, or if
they constitute valid mesh sections. We compare all regions
culled by our protocol with the reference mesh.

a. Real b. Volumetric fusion
w. original depth

c. Volumetric fusion
w. inpainting depth

e. NeuS-facto
w. inpainting depth

f. Ours (w Two-head)d. NeuS-facto
w. original depth

Figure 4. The ablation study of inpainting depth and two-head
structure. We visualize the results of Volumetric fusion and Neus-
facto methods with original depth and with inpainting depth. We
also present the results with or without the two-head structure.
The two-head structure can help Neus-facto fit the color better and
avoid underfitting.

3.3. Per-room quantitative comparison result

In Table 3 and Table 4, we measure the reconstruction
and rendering quality quantitatively for each room. Our
method can obtain a good trade-off between reconstruc-
tion and rendering results. Note that we did not apply the
data augmentation to the classroom, computer, and sauna
room of Kinect sequences. Because the data augmenta-
tion requires accurate pseudo images and depths, the cur-
rent NeuS-facto model still cannot render accurate pseudo
depths and cannot further contribute to the final results.

We also try NeRF++ [14], Mip-NeRF [2] on the MuSH-
Room dataset, but these pipelines cannot work on real-
world dataset, which indicates the proposal sampling is very
crucial for the noisy real-world data. The overall render-
ing and reconstruction quality of Kinect sequences are rel-
atively better than the results of the iPhone. Potential esti-
mation comes from Kinect can obtain more accurate depth
map, which contribute to both the reconstruction and novel
view synthesis. For methods that predict SDF for recon-
struction, inaccurate depths are not only detrimental to the
reconstruction, but also hinder the synthesis learning.



Method Reconstruction quality Rendering quality
Test within a single sequence Test with a different sequence

Acc ↓ Comp ↓ C-ℓ1 ↓ NC ↑ F-score ↑ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
Volumetric Fusion (original depth) 0.0178 0.0218 0.0198 0.8514 0.9217 14.61 0.6920 0.3774 12.90 0.6634 0.4150

Volumetric Fusion (inpainting depth) 0.0207 0.0212 0.0210 0.8407 0.9143 14.92 0.6873 0.3950 13.84 0.6556 0.4170
NeuS-facto (original depth) 0.0145 0.0183 0.0164 0.9121 0.9565 21.08 0.7658 0.2198 22.37 0.8483 0.1396

NeuS-facto (inpainting depth) 0.0136 0.0161 0.0149 0.9130 0.9655 21.21 0.7709 0.2132 21.98 0.8465 0.1427

Table 2. The ablation study of inpainting depth and two-head structure. Test within a single sequence means we uniform sample test frames
from a single sequence and train on all left frames. Test with a different sequence means we train on one sequence and test on another
individual sequence.

3.4. Per-room qualitative comparison result

In this section we show more visualization comparison
of each methods with both test within a single sequence and
test with a different sequence methods. We show mesh com-
parison qualitatively in Figure 5 and Figure 6 for Kinect
and iPhone sequences. Our method provides a relatively
smoother and more completed mesh. The iPhone mesh is
more coarse than Kinect mesh, except the mesh produced
by Go-Surf [10] method, which shows this method is more
robust to devices.

3.5. Ablation study

We further evaluate the effect of inpainting depth quanti-
tatively and qualitatively and show the results in Table 2 and
Figure 4. Volumetric fusion heavily relies on the complete-
ness of the depth. Without inpainting the holes, the mesh
will have parts missing where depth is invalid, as shown
in Figure 4b. We also visualize the effect of the two-head
structure in Figure 4. Without the two-head structure, the
color of the object exhibits sub-optimal learning, as shown
in the red sofa marked by the green square in Figure 4e and
4f, in which the color transitions from a rich red to a paler
shade.
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Rendering qualityReconstruction quality Test within a single sequence Test with a different sequenceRoom Device Methods
Acc ↓ Comp ↓ C-ℓ1 ↓ NC ↑ F-score ↑ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Volumetric Fusion 0.0207 0.0212 0.0210 0.8407 0.9143 14.92 0.6873 0.3950 13.84 0.6556 0.4170
GO-Surf 0.0306 0.0369 0.0337 0.8659 0.8099 21.48 0.7698 0.2685 19.45 0.7189 0.2332
Nerfacto 0.0349 0.2015 0.1182 0.7018 0.5870 22.99 0.7918 0.2245 22.95 0.8564 0.1276

NeuS-facto 0.0136 0.0161 0.0149 0.9130 0.9655 21.21 0.7709 0.2132 21.98 0.8465 0.1427
Kinect

Ours 0.0139 0.0167 0.0153 0.9108 0.9625 22.95 0.7946 0.2396 22.99 0.8579 0.1354
Volumetric Fusion 0.0355 0.0187 0.0271 0.7990 0.8616 12.01 0.5546 0.4869 12.35 0.5849 0.4695

GO-Surf 0.0278 0.0229 0.0254 0.8767 0.9248 18.88 0.6726 0.3659 18.42 0.6764 0.3940
Nerfacto 0.0406 0.3443 0.1924 0.6573 0.4773 21.22 0.7884 0.2040 22.35 0.8136 0.2159

NeuS-facto 0.0407 0.0231 0.0319 0.8604 0.8884 19.44 0.7250 0.3463 20.01 0.7230 0.3631

coffee
room

iPhone

Ous 0.0412 0.0234 0.0323 0.8653 0.8892 20.89 0.7564 0.2968 21.38 0.7636 0.2961
Volumetric Fusion 0.0323 0.0402 0.0362 0.8402 0.8395 15.41 0.6764 0.4007 14.87 0.6867 0.4086

GO-Surf 0.0281 0.0302 0.0291 0.9016 0.8972 22.40 0.7877 0.2615 22.44 0.8178 0.2305
Nerfacto 0.0556 0.1008 0.0782 0.7314 0.5985 24.15 0.8270 0.2094 26.29 0.8849 0.1510

NeuS-facto 0.0253 0.0229 0.0241 0.9033 0.9122 22.99 0.8080 0.2338 25.00 0.8561 0.1925
Kinect

Ours 0.0258 0.0233 0.0246 0.9018 0.9106 24.05 0.8262 0.2285 25.65 0.8722 0.1787
Volumetric Fusion 0.0560 0.0162 0.0361 0.8069 0.7925 12.29 0.6000 0.4543 11.96 0.5596 0.4635

GO-Surf 0.0646 0.0407 0.0526 0.8566 0.6302 17.90 0.6768 0.3847 16.59 0.5820 0.4886
Nerfacto 0.0623 0.1471 0.1047 0.6432 0.5684 21.94 0.7855 0.2393 21.86 0.7903 0.2159

NeuS-facto 0.0551 0.0299 0.0425 0.8452 0.7854 16.59 0.6636 0.4197 15.83 0.6327 0.4321

computer
room

iPhone

Ous 0.0474 0.0276 0.0375 0.8555 0.8172 20.10 0.7411 0.3530 18.10 0.6894 0.3649
Volumetric Fusion 0.0469 0.0431 0.0450 0.7633 0.7658 12.46 0.5750 0.4898 12.09 0.5455 0.5273

GO-Surf 0.0401 0.0258 0.0330 0.8118 0.8816 18.99 0.6985 0.3823 19.42 0.7283 0.3120
Nerfacto 0.0564 0.1043 0.0804 0.7089 0.6258 21.12 0.7535 0.2908 22.13 0.8112 0.2184

NeuS-facto 0.0384 0.0320 0.0352 0.8150 0.8468 19.53 0.7258 0.3356 20.18 0.7707 0.2750
Kinect

Ours 0.0377 0.0332 0.0354 0.8151 0.8455 20.89 0.7509 0.3221 21.33 0.7919 0.2534
Volumetric Fusion 0.0688 0.0238 0.0463 0.7344 0.7479 11.27 0.4335 0.5815 11.08 0.4542 0.5731

GO-Surf 0.1045 0.0347 0.0696 0.7592 0.6494 15.36 0.4892 0.5902 14.31 0.4928 0.6094
Nerfacto 0.0709 0.1334 0.1022 0.6608 0.6430 18.27 0.6381 0.3617 17.05 0.6003 0.4137

NeuS-facto 0.0938 0.0585 0.0761 0.7290 0.5719 15.61 0.5391 0.5654 14.23 0.5153 0.5743

activity

iPhone

Ous 0.0837 0.0536 0.0687 0.7505 0.6108 16.64 0.5748 0.5026 15.30 0.5641 0.5274
Volumetric Fusion 0.0426 0.0304 0.0365 0.7605 0.8316 14.51 0.6978 0.4051 12.36 0.6715 0.4362

GO-Surf 0.0336 0.0311 0.0324 0.8173 0.8823 20.61 0.8096 0.2907 18.21 0.7975 0.2881
Nerfacto 0.0567 0.1361 0.0964 0.6144 0.5255 22.24 0.8173 0.2479 20.34 0.8554 0.1972

NeuS-facto 0.0265 0.0204 0.0235 0.8164 0.9300 20.94 0.8154 0.2654 19.18 0.8467 0.2138
Kinect

Ours 0.0272 0.0209 0.0240 0.8142 0.9249 22.25 0.8226 0.2619 20.47 0.8614 0.2086
Volumetric Fusion 0.0417 0.0149 0.0283 0.7688 0.8688 11.71 0.5719 0.5117 11.85 0.5564 0.5111

GO-Surf 0.0513 0.0248 0.0381 0.8145 0.8863 17.11 0.6641 0.4564 18.58 0.6730 0.4440
Nerfacto 0.0554 0.0769 0.0661 0.6156 0.6376 18.14 0.7492 0.2939 19.67 0.7839 0.2490

NeuS-facto 0.0394 0.0219 0.0307 0.7946 0.8746 15.64 0.6806 0.4440 16.45 0.6624 0.4312

kokko

iPhone

Ous 0.0398 0.0248 0.0323 0.8019 0.8651 17.65 0.7280 0.3865 17.72 0.6814 0.3711
Volumetric Fusion 0.0265 0.0307 0.0286 0.8404 0.8759 13.30 0.6668 0.4357 12.20 0.6902 0.4233

GO-Surf 0.0230 0.0189 0.0209 0.9006 0.9401 19.43 0.7871 0.2946 20.99 0.7976 0.2449
Nerfacto 0.0476 0.1599 0.1038 0.6742 0.6076 21.00 0.7949 0.2374 22.88 0.8619 0.1533

NeuS-facto 0.0185 0.0184 0.0184 0.9024 0.9403 19.40 0.7759 0.2658 22.45 0.8505 0.1616
Kinect

Ours 0.0191 0.0189 0.0190 0.9002 0.9354 20.86 0.8000 0.2584 23.59 0.8683 0.1527
Volumetric Fusion 0.0378 0.0134 0.0256 0.8184 0.8712 11.47 0.5243 0.5268 11.88 0.5479 0.5183

GO-Surf 0.0414 0.0332 0.0373 0.8729 0.8627 17.35 0.6037 0.4502 17.10 0.6267 0.4529
Nerfacto 0.0266 0.2674 0.1470 0.6725 0.6064 19.34 0.7414 0.2391 19.46 0.7605 0.2203

NeuS-facto 0.0316 0.0195 0.0256 0.8803 0.9093 17.35 0.6671 0.3593 18.02 0.6810 0.3448

honka

iPhone

Ous 0.0329 0.0258 0.0294 0.8820 0.8887 18.89 0.7054 0.3136 18.25 0.6978 0.3155

Table 3. The quantitative reconstruction and rendering comparison results of each room. The best results are highlighted in pink. The
second best results are marked in yellow. Test within a single sequence means we uniformly sample test frames from a single sequence
and train on all left frames. Test with a different sequence means we train on one sequence and test on another individual sequence. Our
method provides a good trade-off between mesh and novel view synthesis results.
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2018. 1



Rendering qualityReconstruction quality Test within a single sequence Test with a different sequenceRoom Device Methods
Acc ↓ Comp ↓ C-ℓ1 ↓ NC ↑ F-score ↑ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Volumetric Fusion 0.0365 0.0288 0.0327 0.8233 0.8398 14.56 0.7024 0.3721 13.54 0.6751 0.4106
GO-Surf 0.0310 0.0221 0.0265 0.8836 0.8998 22.85 0.8109 0.2419 22.22 0.7921 0.2017
Nerfacto 0.0567 0.1697 0.1132 0.6968 0.5461 24.96 0.8420 0.1989 25.80 0.8920 0.1277

NeuS-facto 0.0296 0.0221 0.0259 0.8785 0.8879 23.10 0.8238 0.2458 24.16 0.8696 0.1552
Kinect

Ours 0.0298 0.0223 0.0260 0.8789 0.8853 24.66 0.8401 0.2270 25.44 0.8812 0.1471
Volumetric Fusion 0.0592 0.0209 0.0401 0.7736 0.7457 11.32 0.5425 0.5362 11.43 0.5337 0.5219

GO-Surf 0.0511 0.0308 0.0410 0.8563 0.7725 17.40 0.6042 0.5191 19.27 0.6482 0.4793
Nerfacto 0.0519 0.1311 0.0915 0.6976 0.6339 20.63 0.7095 0.3463 22.54 0.7900 0.2339

NeuS-facto 0.0596 0.0446 0.0521 0.8047 0.6781 17.72 0.6559 0.5018 18.52 0.6833 0.4602

classroom

iPhone

Ours 0.0546 0.0402 0.0474 0.8130 0.7088 19.63 0.6901 0.4464 19.23 0.6729 0.3824
Volumetric Fusion 0.0664 0.0344 0.0504 0.7953 0.7979 12.97 0.6039 0.4701 11.94 0.6087 0.4795

GO-Surf 0.0815 0.0398 0.0606 0.8501 0.8046 20.31 0.7393 0.2873 19.31 0.7273 0.3268
Nerfacto 0.0927 0.0924 0.0925 0.6793 0.5664 21.49 0.7696 0.2466 20.18 0.7571 0.2663

NeuS-facto 0.0749 0.0231 0.0490 0.8506 0.8485 19.99 0.7460 0.2590 19.51 0.7397 0.2732
Kinect

Ours 0.0737 0.0228 0.0482 0.8507 0.8491 21.63 0.7707 0.2649 20.19 0.7553 0.2841
Volumetric Fusion 0.0843 0.0286 0.0564 0.7629 0.7108 11.82 0.5597 0.4896 11.89 0.5335 0.5313

GO-Surf 0.0906 0.0320 0.0613 0.8106 0.7116 16.42 0.6263 0.4140 15.50 0.5589 0.5198
Nerfacto 0.1004 0.1053 0.1028 0.6452 0.5358 20.68 0.7862 0.2150 19.07 0.7057 0.3112

NeuS-facto 0.1021 0.0417 0.0719 0.7808 0.6454 17.13 0.6983 0.3764 16.04 0.6365 0.4552

koivu

iPhone

Ours 0.0924 0.0418 0.0671 0.7984 0.6758 19.94 0.7491 0.3059 18.04 0.6753 0.3938
Volumetric Fusion 0.0199 0.0206 0.0202 0.8580 0.9003 14.32 0.7514 0.3708 14.37 0.7632 0.3785

GO-Surf 0.0291 0.0808 0.0550 0.8706 0.7273 22.56 0.8429 0.2750 20.05 0.8112 0.3058
Nerfacto 0.0501 0.2916 0.1709 0.6608 0.4312 24.25 0.8565 0.2038 24.90 0.9009 0.1384

NeuS-facto 0.0152 0.0186 0.0169 0.9126 0.9376 22.65 0.8502 0.2351 23.55 0.8928 0.1658
Kinect

Ours 0.0151 0.0185 0.0168 0.9135 0.9378 26.46 0.9081 0.1546 24.69 0.8995 0.1589
Volumetric Fusion 0.0381 0.0158 0.0270 0.8177 0.8347 11.57 0.5975 0.5157 11.44 0.6022 0.5151

GO-Surf 0.0281 0.0222 0.0252 0.8932 0.8795 19.64 0.6920 0.4356 19.69 0.7133 0.4240
Nerfacto 0.0427 0.0705 0.0566 0.7026 0.6719 22.62 0.8254 0.2244 22.17 0.8095 0.2570

NeuS-facto 0.0330 0.0219 0.0274 0.8818 0.8535 20.60 0.7705 0.3568 18.63 0.7055 0.3965

vr room

iPhone

Ours 0.0336 0.0226 0.0281 0.8831 0.8483 22.04 0.7937 0.3088 19.45 0.7178 0.3477
Volumetric Fusion 0.0240 0.0395 0.0317 0.8461 0.8790 13.60 0.6623 0.4127 13.22 0.6549 0.4232

GO-Surf 0.0233 0.0394 0.0314 0.9003 0.9124 19.32 0.7551 0.3788 18.35 0.7622 0.3539
Nerfacto 0.0590 0.1231 0.0910 0.6892 0.6433 19.81 0.7688 0.3329 19.07 0.7833 0.2690

NeuS-facto 0.0185 0.0349 0.0267 0.9010 0.9235 18.53 0.7553 0.3510 18.69 0.7884 0.2817
Kinect

Ours 0.0181 0.0348 0.0265 0.9052 0.9227 20.21 0.7750 0.3242 19.11 0.7896 0.2848
Volumetric Fusion 0.0387 0.0203 0.0295 0.8312 0.8537 12.16 0.5739 0.5277 11.99 0.5874 0.5135

GO-Surf 0.0672 0.0279 0.0476 0.8699 0.8206 18.93 0.6581 0.4927 18.76 0.6736 0.4967
Nerfacto 0.0609 0.0933 0.0771 0.6696 0.6440 21.19 0.7602 0.3131 21.43 0.7762 0.3156

NeuS-facto 0.0630 0.0436 0.0533 0.8357 0.7241 17.37 0.6791 0.5354 16.78 0.6585 0.5330

sauna

iPhone

Ours 0.0648 0.0509 0.0579 0.8480 0.6784 19.82 0.7126 0.4700 18.61 0.6805 0.4778
Volumetric Fusion 0.0381 0.0521 0.0451 0.7911 0.7949 12.34 0.6049 0.4563 12.61 0.5572 0.5191

GO-Surf 0.0345 0.0419 0.0382 0.8621 0.8648 17.63 0.7074 0.4143 19.67 0.7403 0.3148
Nerfacto 0.0599 0.1056 0.0827 0.7216 0.5836 18.77 0.7497 0.2871 21.41 0.8538 0.1734

NeuS-facto 0.0336 0.0446 0.0391 0.8453 0.8324 17.77 0.7281 0.3550 20.34 0.8240 0.2320
Kinect

Ours 0.0346 0.0466 0.0406 0.8454 0.8214 18.62 0.7522 0.3271 21.05 0.8452 0.2078
Volumetric Fusion 0.0610 0.0343 0.0477 0.7540 0.7632 11.78 0.5613 0.4957 12.12 0.5656 0.4771

GO-Surf 0.1033 0.0361 0.0697 0.7914 0.6802 16.05 0.6052 0.5116 18.21 0.6018 0.5231
Nerfacto 0.0798 0.0805 0.0801 0.6970 0.5545 21.31 0.7709 0.2589 21.63 0.7945 0.2377

NeuS-facto 0.1405 0.1484 0.1445 0.7228 0.2688 13.61 0.6170 0.5961 13.80 0.6058 0.6174

olohuone

iPhone

Ours 0.1389 0.1374 0.1381 0.7332 0.2988 17.27 0.6787 0.5140 16.78 0.6759 0.5079

Table 4. The quantitative reconstruction and rendering comparison results of each room. The best results are highlighted in pink. The
second best results are marked in yellow. Test within a single sequence means we uniformly sample test frames from a single sequence
and train on all left frames. Test with a different sequence means we train on one sequence and test on another individual sequence. Our
method provides a good trade-off between mesh and novel view synthesis results.
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Figure 5. We compare the mesh reconstruction quality of Kinect sequences qualitatively. Please zoom in to see the details.
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Figure 6. We compare the mesh reconstruction quality of iPhone sequences qualitatively. Please zoom in to see the details.
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Figure 7. We compare the rendering quality of Kinect sequences with our test within a sequence method qualitatively. The color saturation
level and fine-grained content of our method are comparable to the results of Nerfacto [9]. Volumetric Fusion [4] rendering results have a
large content gap with the real images. GO-Surf [10] produces images lacking fine-grained details. Visualization results of NeuS-facto [13]
still have some ripples, and colors are underfitting to some extent. Please zoom in to see the details.
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Figure 8. We compare the rendering quality of Kinect sequences with our test with a different sequence method qualitatively. The color
saturation level and fine-grained content of our method are comparable to the results of Nerfacto [9]. Volumetric Fusion [4] rendering
results have a large content gap with the real images. GO-Surf [10] produces images lacking fine-grained details. Visualization results of
NeuS-facto [13] still have some ripples, and colors are underfitting to some extent. Please zoom in to see the details.
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Figure 9. We compare the rendering quality of iPhone sequences with the test within a sequence method qualitatively. Nerfacto [9] method
provides the most detailed and photorealistic results. Volumetric Fusion [4] rendering results have a large content gap with the real images.
GO-Surf [10] produces images lacking fine-grained details. NeuS-facto [13] results are much more blurry. Our method improves the
NeuS-facto from color and fine-grained details but still has a distance when compared with Nerfacto results. The blurry results also show
the inaccurate depth in iPhone sequences can be detrimental to the synthesis quality. Please zoom in to see the details.
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Figure 10. We compare the rendering quality of iPhone sequences with the test with a different sequence method qualitatively. Nerfacto [9]
method provides the most detailed and photorealistic results. Volumetric Fusion [4] rendering results have a large content gap with the real
images. GO-Surf [10] produces images lacking fine-grained details. NeuS-facto [13] results are much more blurry. Our method improves
the NeuS-facto from color and fine-grained details but still has a distance when compared with Nerfacto results. The blurry results also
show the inaccurate depth in iPhone sequences can be detrimental to the synthesis quality. Please zoom in to see the details.


