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This document supplements the main paper with additional
information concerning:

1. Dataset Creation (supplements Section 3.1)

• Annotation Task Interface

• Worker Qualification Task

• Analysis of Workers’ Annotation Differences

2. Experimental Design (supplements Section 4.1)

3. Experimental Results (supplements Sections 4.2-4.4)

A. Dataset Creation
A.1. Annotation Task Interface

The task interface displays five images within a tabbed
container on the left and preliminary questions with task
instructions on the right. A screenshot of the task interface
(without instructions) is shown in Figure 1.

To account for occlusions and holes while keeping the
task simple for annotators, we permitted annotators to gen-
erate multiple polygons. For occlusions, annotators could
use as many polygons as necessary for demarcating fore-
ground objects partitioned into multiple polygons. For
holes, we apply an even-odd fill rule to images featuring
foreground objects with holes. With an even-odd fill rule,
every area inside an even number of enclosed areas be-
comes hollow, and every region inside an odd number of
enclosed areas becomes filled [11]. By treating the image’s
four corners as the first enclosed area, the outermost bound-
ary of the foreground object becomes the second enclosed
area. Moreover, holes within foreground objects represent
the third layer of enclosed areas and become filled, allowing
annotators to demarcate foreground objects featuring holes.
In practice, annotators first trace the outermost boundary of
the foreground object and close the path by clicking the first
point a second time. We then instructed annotators to trace
any holes within the foreground object, and so those holes
end up in odd-numbered layers.

A.2. Worker Qualification Task

We administered a qualification task for workers to sup-
port our collection of high-quality ground truth annotations.
The qualification task required annotating five images, each
of which features a distinct challenging annotation scenario.
All five images are shown in Figure 2. The first two images
show a table and a bench, offering examples with complex
boundaries and holes. The next two images feature a per-
son holding a coffee mug, to support educating a crowd-
worker about our expectations for annotating objects with
complex geometries that have many curves and occlusions
that require annotating multiple polygons. The final image
is a spatula. This task verified a crowdworker’s ability to
correctly identify and annotate multiple holes that can arise
within the salient object.

After crowdworkers annotated each qualification image,
the backend code of our website checked if their annotation
was sufficiently similar to the GT annotation (i.e., IoU sim-
ilarity of at least 0.90). Crowdworkers could only proceed
to the following image after they obtained an IoU ≥ 0.90
on the current image. Crowdworkers obtaining an IoU ≥
0.90 on all five qualification assessment images on a per-
image basis gave us substantial confidence that they would
be able to successfully handle complex and challenging out-
lier cases within the original VizWiz Dataset.1

A.3. Analysis of Workers’ Annotation Differences

We collected a larger number of redundant annotations
per image for a random subset of images to better explore
when and why annotation differences are observed from dif-
ferent workers. Specifically, for this analysis, we collected
four annotations as opposed to two for a subset of 1,237 im-
ages. Examples of the redundant annotations collected per
image are shown in Figure 3.

The first example (i.e., row 1 of Figure 3) highlights that

1Some crowdworkers did not pass the qualification assessment due to
time constraints. In these cases, crowdworkers would contact us with the
images they annotated. If we were confident in their annotation abilities,
we manually added these crowdworkers to the qualified worker pool.



Figure 1. A screenshot of our annotation task interface.

Figure 2. The five images used for the worker qualification task.
Each was selected to demonstrate a challenging annotation sce-
nario such as complex boundaries, holes, and occlusions.

annotation differences can stem from challenging annota-
tion scenarios where objects contain holes (e.g., in mug han-
dle) or are occluded (e.g., by the straw). For instance, the
hole was not annotated in the third annotation. Addition-
ally, only the fourth annotation captured the occlusion that
arises from the straw.

The second example (i.e., row 2 of Figure 3) highlights
that annotation differences can stem from ambiguity regard-
ing what is the salient object. As shown, the first two an-
notations flag the image as lacking a foreground object,
the third annotation identifies the child holding the cup as
the salient object, and the fourth annotation identified the
child’s cup as the salient object.

The third example (i.e., in row 3 of Figure 3) highlights
that annotation differences also can arise for objects that
simultaneously have complex boundaries and holes. In an-
notation one, the worker did not fully annotate the salient
object, cutting out part of the object from the annotation.
Only the third and fourth annotations accurately annotate
all holes that are present in the salient object’s boundary
while also having tight boundaries in the annotation.

In summary, we found occlusions, holes, and saliency
ambiguity to be the primary factors contributing to annota-
tion differences. In the case of occlusions, worker differ-
ences can arise when deciding whether to include objects
that are a composite part of the salient object. In the case
of holes, annotation differences can arise regarding which
holes to annotate. Last, we found that it can be ambigu-
ous as to which object is the most salient. To facilitate fu-
ture analysis of human performance, we will publicly share
metadata with all humans’ annotations for all images.

B. Experimental Design
We compute the five metrics used in the benchmarking

section using the following definitions:
Mean Absolute Error [12] represents the average abso-

lute difference between the predicted saliency map and its



Figure 3. Example annotations from our random subset where we
collected four annotations as opposed to two. We find worker dif-
ferences primarily occur in challenging annotation scenarios such
as holes, occlusions, complex boundaries, and object saliency.

ground truth per pixel. It can be given as:

MAE =
1

H ∗W

H∑
r=1

W∑
c=1

|pred(r, c)− gt(r, c)| (1)

where pred represents the predicted saliency map, gt repre-
sents the ground truth, (H,W ) represents the height and
width of the image, and (r, c) represents the pixel co-
ordinates for the given image.

Structure Measure [3] is used to measure the similarity
between the predicted saliency map and the ground truth.
Since, we convert both the predictions and ground truths
into the [0, 1] range, we apply the formula directly to the
predictions and maps. It can defined as follows:

Sm = (1− α)Sr + αSo (2)

where, Sr is defined as the region aware similarity score, So

is defined as the object aware similarity score, and α repre-
sents the weight that is used to sum up the values. We set
α = 0.5, therefore making sure that we see equal contribu-
tion from both region and object aware scores.

F-Measure [1] represents the precision and recall ratio
for the given prediction. It can be represented as:

Fm =
(1 + β2) ∗ Precision ∗Recall

β2 ∗ Precision+Recall
(3)

Here precision = TP
TP+FP and recall = TP

TP+FN on the
entire prediction image by pixels. We set β2 = 0.3 and re-
port the average of all F-measures as Fm similar to previous
works.

Enhanced Alignment Measure [4] is used as the metric to
measure the effectiveness of the saliency prediction against
the ground truth. It captures the pixel-level matching infor-
mation and image-level statistics into one single metric by
the means of an enhanced alignment matrix ϕ. It is defined
as follows:

Em =
1

H ∗W

H∑
r=1

W∑
c=1

ϕFM (r, c) (4)

where, ϕFM represents the enhanced alignment matrix for
the foreground map, (H,W ) represents the height and
width of the image, and (r, c) represents the pixel co-
ordinates for the given image.

Intersection over Union also known as Jaccard Index is
used to determine the similarity between sample sets. In
this case it captures the overlap between the ground truth
and prediction map of the salient object. We convert the
predictions in binary map and compute the Jaccard Index
over two classes. It can be defined as follows:

IoU = J(A,B) =
|A ∩B|
|A ∪B|

(5)

where, A and B are images of same size, consisting of inte-
ger class values {0, 1}.

C. Algorithm Benchmarking
We provide more details about our algorithm bench-

marking here. First, we report each model’s backbone in
Table 1. Second, we show results for SOD models men-
tioned in the paper that are older. Of note, for fine-tuning
the InSPyReNet model and training the InSPyReNet model
from scratch using VizWiz-SO and DUTS+VizWiz-SO, we
modify the training hyperparameters to fit the GPU re-
quirements available to us. Specifically, we reduce the
batchsize to 4, num worker to 4, epochs to 40,
and warmup iterations to 1000. We also report re-
sults for three variants of the second-best model, VST [15]:
(1) pretrained model fine-tuned on VizWiz-SO (VST-FT),
(2) algorithm trained from scratch on VizWiz-SO (VST-S),
and (3) algorithm trained from scratch on DUTS [17] and
VizWiz-SO (VST-DS). Overall results are shown in Table
2 and fine-grained analysis of these models are shown in
Table 3.

We show qualitative examples for these models on
VizWiz-SO in Figures 4 and 5. These examples feature
a variety of challenges we observed for the models in our
fine-grained analysis. Most models perform poorly in iden-
tifying larger salient objects (rows 4 and 5 in Figure 4 and



HP VST PGNet DIS ICON TRACER IPR
[8] [19] [13] [20] [7] [6]

Backbone - T2T-ViT R-18+Swin U2Net Swin ENet-7 Swin

Table 1. Details of the various backbones used by the algorithms used for benchmarking. (ViT=Vision Transformer [2]; R=ResNet [5];
Swin=Shifted window transformer [9]; ENet=EfficientNet [16])

BASNet F3Net U2Net PFSNet VST-FT VST-S VST-DS
[14] [18] [15] [10]

A
ttr

. Backbone R-34 R-50 - R-50 ViT ViT ViT
Training set D D D VW VW D+VW D

Input size 2562 3522 3202 3522 2242 2242 2242

Size (MB) 333 98 4.7 120 171 171 171

V
iz

W
iz

-S
O MAE ↓ 0.28 0.28 0.26 0.32 0.19 0.21 0.23

Sm ↑ 0.59 0.55 0.61 0.48 0.64 0.63 0.58
Fm ↑ 0.77 0.74 0.80 0.70 0.74 0.72 0.68
Em ↑ 0.64 0.65 0.65 0.60 0.77 0.70 0.70
IoU ↑ 0.62 0.53 0.63 0.48 0.70 0.69 0.64

Table 2. Quantitative comparison of off-the-shelf models (which are cited) as well as the VST model after being fine-tuned (-FT), trained
from scratch on our VizWiz-SO dataset (-S), and trained from scratch on both DUTS and VizWiz-SO datasets (-DS). D=DUTS-TR [17];
VW=VizWiz-SO; R=ResNet [5]; VST=Visual Saliency Transformer [8]; ViT=Vision Transformer [2]

BASNet F3Net U2Net PFSNet VST-FT VST-S VST-DS
[14] [18] [15] [10]

Text Present True 0.23 0.22 0.22 0.25 0.16 0.17 0.18
False 0.35 0.38 0.32 0.42 0.24 0.26 0.28

Coverage
Small 0.06 0.16 0.07 0.16 0.09 0.11 0.14
Medium 0.15 0.20 0.15 0.24 0.09 0.10 0.11
Large 0.60 0.47 0.54 0.54 0.38 0.39 0.40

Boundary High 0.15 0.21 0.15 0.24 0.11 0.12 0.12
Low 0.38 0.34 0.35 0.38 0.26 0.27 0.28

Resolution High 0.30 0.30 0.28 0.33 0.17 0.18 0.19
Low 0.26 0.27 0.26 0.31 0.19 0.20 0.21

Quality Good 0.22 0.23 0.21 0.26 0.16 0.17 0.19
Poor 0.44 0.43 0.41 0.47 0.30 0.31 0.33

Table 3. Fine-grained analysis of off-the-shelf models (which are cited) as well as the VST model after being fine-tuned (-FT), trained
from scratch on our VizWiz-SO dataset (-S), and trained from scratch on both DUTS and VizWiz-SO datasets (-DS). This covers analysis
with respect to presence of text on the salient object (“Text Present”), relative size of the salient object in the image (“Coverage”), relative
complexity of the salient object’s boundary (“Boundary”), and image quality (“Quality”) using the MAE ↓ metric. As shown, the models
perform worse when salient objects lack text, occupy a large portion of the image, and have less complex boundaries as well as when the
image quality is poor.

row 1 in Figure 5), but perform relatively well on images
with smaller salient objects (row 2 in Figure 5). We also
observe the most models perform better when salient ob-
jects contain text (rows 1 and 2 in Figure 4 and row 3 in
Figure 5) versus lack text (rows 5 and 6 in Figure 4 and row
4 in Figure 5). Further, we see most models perform worse
for images with complex boundaries (row 5 in Figure 5) and
that are lower quality (rows 3, 4, and 5 in Figure 4 and rows
6 and 7 in Figure 5).

References
[1] Radhakrishna Achanta, Sheila Hemami, Francisco Estrada,
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