
7. Appendix
7.1. Encoding of Billow

Appropriate encoding of the side information can have a
strong effect in the overall performance. We evaluated dif-
ferent ways to encode our illustrations to be used with ZSL
state-of-the-art methods. From Billow, we created a sepa-
rate test set and evaluated the predictive power for species
classification of each encoding. This is a challenging task,
since we only have a couple of illustrations (one male; one
female; and , in some cases, a head detail) per species. In
contrast, traditional methos usually require a large amount
of images per species to train be able to perform automatic
classification.

To evaluate the quality of our encoding method we mea-
sured how well can we predict the class at different hier-
archical levels. Out of the 10’631 we take all the species
whose genus has at least 5 species in the dataset and create
a train/validation split from them. This results in 18’489 il-
lustrations: 13362 for training, 1908 for validation and 3219
for testing. In all splits combined there are samples of 8646
species, 956 genus, 175 families and 33 orders. We evaluate
top-1 and top-10 accuracy on all 4 hierarchical.

For training we explored Variational Auto-Encoder
(VAE) generative models to encode our dataset. VAEs con-
sist of two networks, an encoder E and a decoder D. A
regular auto-encoder would simply use the output of the en-
coder and feed it to the decoder to reconstruct the input. For
training the auto-encoder, the reconstruction loss is defined
as L = d(x, D(E(x))), where d is usually a Euclidean dis-
tance between the input and its reconstruction. VAEs as-
sume a prior on the output of the encoder pz and maximize
the log-likelihood of the reconstruction produced by D over
the entire prior distribution pz .

Modelling such a distribution would be desirable in our
case as we will use the embedding and the distances be-
tween them for ZSL. Hence we explore two VAE variants:
�-VAE [8,19] and VQ-VAE [34,44]. Our motivation to test
these 2 variations of VAE is to explore the effect of differ-
ent priors on the latent distribution p ⇠ z. �-VAE uses a
more constrained information bottleneck on the embedding

Method top-1
VQ-VAE 0.1
�-VAE 14.2
ResNet-101⇤ 15.5
ResNet-50⇤ 12.0
ResNet-18⇤ 16.5
ResNet-18 (ours) 17.7

Table 6. Top-1 species accuracy on a test set of Billow samples
with different encoders. ⇤ indicates models without fine-tuning

Level 1-hop 2-hop 3-hop 4-hop
iNat2017

species 9.1 ± 0.4 9.9 ± 0.5 9.3 ± 0.4 7.0 ± 0.7
genus 29.4 ± 0.5 10.2 ± 0.5 12.9 ± 0.6 11.0 ± 1.4
family 50.2 ± 0.7 36.7 ± 0.9 12.9 ± 0.6 16.8 ± 2.6
order 77.8 ± 0.7 67.7 ± 0.6 69.7 ± 1.4 16.8 ± 2.6

iNat2021mini
species 12.8 ± 0.5 13.6 ± 0.4 11.4 ± 0.8 11.6 ± 0.4
genus 29.3 ± 0.4 13.7 ± 0.4 17.1 ± 1.1 16.2 ± 0.7
family 47.4 ± 0.8 38.3 ± 0.4 17.4 ± 1.2 20.6 ± 1.1
order 75.1 ± 1.0 69.9 ± 1.0 69.0 ± 1.3 20.6 ± 1.1

iNat2021
species 12.3 ± 0.3 13.4 ± 0.6 11.2 ± 0.3 10.6 ± 0.4
genus 28.8 ± 0.7 13.5 ± 0.6 16.8 ± 0.6 15.7 ± 0.7
family 46.8 ± 0.5 37.8 ± 0.6 16.9 ± 0.6 20.7 ± 0.7
order 74.7 ± 0.4 70.1 ± 0.8 69.8 ± 0.8 20.7 ± 0.7

Table 7. Unseen n-hop validation sets top-1 accuracy at different
label hierarchy levels. Average of 5 runs ± standard deviation.

z than vanilla-VAE (i.e. � > 1) to obtain a disentangled
representation z. As a reconstruction, we slowly increase
the bottleneck capacity over training as proposed by [8].
VQ-VAE on other hand imposes a discrete distribution over
the embedding z, this allows to control the information bot-
tle neck by imposing a very small dimension on the discrete
distribution.

Additionally we fine-tuned a ResNet classifier pretrained
on ImageNet. The classifier was supervised by L = Lcls +
Lcont, where Lcont is as defined in Eq. 1. VAE experiments
were trained their corresponding reconstruction loss and the
supervision loss Lcls.

Once the model was trained we evaluated its predictive
power by feeding the embedding z into a small Multi-layer
Perceptron network and trained to predict the level of the
label k. The results on the test set in Table 6 show that �-
VAE does not perform close to the ResNet models. Along
with our fine-tuned ResNet-18, we include results on pre-
trained modesl on Image-Net without fine-tuning the back-
bone. As expected larger networks achieved higher perfor-
mance, but our fine-tuning on ResNet-18 improved perfor-
mance in the most challenging case of fine-grained species
recognition. Our ResNet-18 already achieved 100% accu-
racy on the training set and observed over-fitting on the val-
idation set after fine-tuning. For this reason we decided to
keep the fine-tuned ResNet18 as the default encoder for bil-
low.

7.2. Accuracy at different hierarchical levels
We evaluated top-1 accuracy at different label hierar-

chies on each n-hop validation set (which were created us-
ing the label hierarchies, see Section 3.1 for details). A pre-
diction is correct at the family-level if the predicted species
was of the same family as the target species. We present
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Table 8. Prototype Alignment and Domain adaptation baseline experiments with different ResNet backbones on iNaturalist. Top-k Accu-
racies

top-1 top-5 top-10
Backbone S U H S U H S U H

iNat2017
ResNet-18 13.1±0.3 7.6±0.5 9.6±0.3 34.4±0.6 20.6±0.6 25.8±0.4 46.0±0.7 28.8±0.5 35.4±0.4
ResNet-50 20.9±0.3 8.2±0.3 11.8±0.4 48.8±0.6 21.8±0.7 30.1±0.7 60.9±0.6 30.9±0.5 41.0±0.5
ResNet-101 23.0±0.3 8.8±0.4 12.8±0.5 51.9±0.4 23.4±0.8 32.3±0.8 63.8±0.5 32.9±0.6 43.5±0.6

iNat2021
ResNet-18 11.1±0.2 7.9±0.2 9.3±0.1 29.2±0.2 19.8±0.3 23.6±0.2 39.7±0.4 27.4±0.4 32.4±0.3
ResNet-50 17.9±0.5 10.5±0.2 13.2±0.3 41.4±0.5 24.8±0.5 31.0±0.5 53.2±0.5 33.8±0.5 41.3±0.5
ResNet-101 20.9±0.3 12.2±0.3 15.4±0.2 45.5±0.2 28.6±0.6 35.1±0.5 56.6±0.2 37.8±0.5 45.3±0.4

iNat2021mini
ResNet-18 11.2±0.3 8.3±0.2 9.5±0.1 29.4±0.3 20.6±0.3 24.2±0.2 40.0±0.3 28.5±0.3 33.3±0.1
ResNet-50 18.3±0.4 10.8±0.3 13.6±0.3 41.9±0.5 25.5±0.5 31.7±0.5 53.5±0.3 34.3±0.7 41.8±0.5
ResNet-101 20.8±0.4 12.7±0.4 15.7±0.2 46.1±0.5 29.0±0.4 35.6±0.2 56.8±0.4 38.5±0.5 45.9±0.3

Model S U H
Resnet-18

DANN [16] 13.0 ± 1.1 10.3 ± 0.5 11.5 ± 0.5
MDD [55] 1.2 ± 0.2 0.0 ± 0.1 0.0 ± 0.1
MCC [21] 4.4 ± 0.5 3.8 ± 0.4 4.0 ± 0.2
PA 48.2 ±0.4 37.2 ±0.4 42.0 ±0.2

Resnet-50
DANN [16] 16.3 ± 0.6 14.4 ± 1.5 15.2 ± 1.1
MDD [55] 0.6 ± 0.3 0.9 ± 1.2 0.2 ± 0.5
MCC [21] 5.8 ± 0.2 6.7 ± 0.7 6.2 ± 0.4
PA 64.8 ±0.5 37.8 ±1.0 47.8 ±0.8

Resnet-101
DANN [16] 24.3 ± 1.8 17.6 ± 2.4 20.3 ± 1.6
MDD [55] 1.4 ± 0.4 0.7 ± 0.5 0.9 ± 0.4
MCC [21] 6.6 ± 0.5 5.8 ± 0.6 6.1 ± 0.4
PA 69.9 ± 0.6 34.6 ±1.5 46.3 ±1.5

Table 9. Prototype Alignment and Domain adaptation baselines
experiments with different ResNet backbones on CUB Dataset.
Top-1 Accuracy

these results in Table 7. The 2-hop (set where no species of
the same family are part of the seen species) performance
between species and genus is similar, suggesting that the
Zero-shot task is equally difficult at the 2 considered hierar-
chy levels. Similarly for 4-hop (no overlap at any hierarchy
label), the performance is equally low at any level. These
results suggest that the label hierarchical distance is a mean-
ingful strategy for evaluation. Future work exploit this label
hierarchy at training time.

7.3. Ablation: Backbone Size
We explore the effect of using different backbones us-

ing end-to-end methods, including different Domain Adap-
tation Baselines and PA (ours). For iNaturalist datasets
in Table 8, we observe better accuracies with larger net-

works, and slightly higher accuracies with ResNet-101. For
iNat2021mini, aligned with what we observed before, we
observe better performance than iNat2020 in all cases con-
sidered in these experiments. The results on CUB dataset in
Table 9 show that the performance increases for all the base-
lines using larger ResNets, while some of the methods have
slightly higher accuracies with ResNet-50 the difference are
within the marging of error compared to ResNet-101.
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