
Supplementary Material
Time to Shine: Fine-Tuning Object Detection Models with

Synthetic Adverse Weather Images

The supplementary material adds additionals information in order to better understand and reproduce the
results of our work.

1 Additional Image Corruption Details
The image corruption models utilized in our study were based on the implementation described in [5]. Some
modifications were made to adapt the snowflakes layer by introducing an alpha channel, allowing control over
the layer’s opacity. Additionally, we extended the corruption library by incorporating a rain-streaks model
derived from the snowflakes model. This involved increasing the motion blur to achieve a rain-streak-like
appearance. The fog model from the corruption library remained unaltered. Details of the parameter settings
for each model can be found in Tables 1, 2, and 3, respectively. The source code for the image corruption
library is available on GitHub: https://github.com/bethgelab/imagecorruptions.

The raindrop model implementation was based on [7]. However, the original model was memory-intensive
and did not fit within the available GPU memory (24GB) for an image size of 1024x1024 pixels. To address
this, we made minor modifications to the code to optimize memory usage and ensure compatibility with the
object detection model being evaluated. The parameterization details for the raindrop model can be found
in Table 4. The source code for the raindrop model is available on GitHub: https://github.com/
astra-vision/GuidedDisent.

The outcomes of the applied weather image overlays are presented in Figure 1, showcasing different levels
of intensity.

It should be noted that in all our evaluations involving the synthetic fog overlay, it was applied to every frame
rather than with a probability of 0.25 as mentioned in the paper. This was inadvertently overlooked in the
main paper.

Intensity Center Standard Deviation Zoom Threshold Radius Sigma Alpha
1 0.20 0.45 1.5 0.85 6 2 0.9
2 0.20 0.40 1.4 0.70 6 2 0.9
3 0.20 0.50 1.7 0.80 6 2 0.9
4 0.35 0.60 2.7 1.10 6 2 0.9
5 0.35 0.65 3.2 1.10 6 2 0.9

Table 1: Parameters used for the snowflake model in five different intensities.
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Figure 1: Examples of image corruptions applied to images in different intensities from 1 to 5.
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Intensity Center Standard Deviation Zoom Threshold Radius Sigma Alpha
1 0.1 0.5 1.5 0.8 10 14 0.9
2 0.2 0.5 1.5 0.8 10 14 0.9
3 0.2 0.55 1.5 0.8 10 14 0.9
4 0.3 0.55 1.5 0.8 10 14 0.9
5 0.4 0.55 1.5 0.8 10 14 0.9

Table 2: Parameters used for the rain-streak model in five different intensities.

Intensity Density Wibbledecay
1 1.5 2.0
2 2.0 2.0
3 2.5 1.7
4 2.5 1.5
5 3.0 1.4

Table 3: Parameters used for the fog model in five different intensities.

Intensity Drop Size Drop Frequency Drop Shape Drop Sigma
1 20 3 0.9 3
2 30 5 0.8 3
3 40 6 0.8 4
4 45 7 0.8 4
5 50 8 0.5 4

Table 4: Parameters used for the raindrop model in five different intensities.

2 Additional Evaluation Details
In this section we give some additional information on the evaluation details of the paper.

2.1 Data Variation
For the evaluation of the data variation within the Midjourney dataset we used the LPIPS metric [8] which
measures the distance between two images using feature vectors of deep neural networks. A higher value in-
dicates more diversity between two images, whereas a lower value indicates more similarity. In our work we
use the LPIPS metric to measure variation and diversity inside datasets similar to [4]. We use the code pro-
vided by https://github.com/richzhang/PerceptualSimilarity. We provide the LPIPS
score of the Midjourney dataset, as well as the scores for each dataset utilised in our benchmark, in Table 5.

2.2 Data Distribution
In our study, we presented the size distribution of cars in the Midjourney dataset categorised as small, medium
and large, and established a baseline by comparing these distributions with benchmark datasets. To provide a
comprehensive analysis, we present the size distribution of small, medium, and large cars for each benchmark
dataset separately in Table 6.
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Dataset LPIPS Average
Midjourney(fog) 0.731
Midjourney(rain) 0.807 0.770
Midjourney(snow) 0.773
Cityscapes 0.601
ACDC(fog) 0.539
ACDC(rain) 0.646 0.603
ACDC(snow) 0.615
NuScenes(clear) 0.651
NuScenes(rain) 0.564
Adverse Dataset(fog) 0.590
Adverse Dataset(rain) 0.704 0.680
Adverse Dataset(snow) 0.744

Table 5: LPIPS scores for Midjourney dataset and all the analysed benchmark datasets in the paper. The
”Average” column presents the aggregated results from the corresponding sections delineated by dashed
lines.

Dataset Size Small Medium Large Total Average(S) Average(M) Average(L)
ACDC(fog) 500 725 1004 405 2134 0.340 0.470 0.190
ACDC(rain) 500 566 972 479 2017 0.281 0.482 0.237
ACDC(snow) 500 561 1214 596 2371 0.237 0.512 0.251
BDD100K(clear) 4133 21948 16625 7764 46337 0.474 0.359 0.168
BDD100K(rain) 3301 13050 12919 6916 32885 0.397 0.393 0.210
BDD100K(snow) 3794 15401 14092 7942 37435 0.411 0.376 0.212
Adverse(fog) 199 300 514 255 1069 0.281 0.481 0.239
Adverse(wet) 199 765 859 387 2011 0.380 0.427 0.192
Adverse(snow) 200 319 681 526 1526 0.209 0.446 0.345
NuScenes(clear) 5710 2506 14641 10858 28005 0.089 0.523 0.388
NuScenes(rain) 5422 1916 15199 11015 28130 0.068 0.540 0.392
Cityscapes 3475 6813 13559 10332 30704 0.222 0.442 0.337

64870 92279 57475 214624 0.282 0.454 0.263

Table 6: Distribution of small, medium and large objects in all benchmark datasets. We also calculate the
average number of small, medium and large objects. ”Adverse” in the dataset column is short for Adverse
Dataset.

2.3 Extreme Adverse Weather
We conducted a performance evaluation of images enhanced using standard augmentation techniques, where
we compared four augmentation strategies: AutoAugment trained on ImageNet [1], RandAugment [2], Aug-
Mix [3] and TrivialAugment [6]. Among these, AugMix achieved the highest overall performance, and its
scores are presented in the paper. To ensure stability amidst variations caused by random transformations, we
computed the average results from 5 separate runs. The results are reported in the paper in Figure 7 next to
results of models fine-tuned only on clear weather images and our synthetic adverse weather image dataset.
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Figure 2: Images from the labeled Midjourney dataset in snow conditions.

3 Additional Dataset Details
In this section, we present additional example images extracted from both the labeled and unlabeled images
from the Midjourney dataset. Specifically, Figure 2, 3, and 4 showcase images representing each weather
domain from the labeled Midjourney dataset. Furthermore, to demonstrate the variations generated with
identical text prompts, Figures 5 to 10 exhibit different variants of images sourced from the unlabeled portion
of the dataset.
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Figure 3: Images from the labeled Midjourney dataset in rain conditions.

Figure 4: Images from the labeled Midjourney dataset in fog conditions.

Figure 5: Multiple variations of an image depicting snowy weather conditions, all generated using the same
text prompt by Midjourney.
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Figure 6: Multiple variations of an image depicting snowy weather conditions, all generated using the same
text prompt by Midjourney.

Figure 7: Multiple variations of an image depicting rainy weather conditions, all generated using the same
text prompt by Midjourney.

Figure 8: Multiple variations of an image depicting rainy weather conditions, all generated using the same
text prompt by Midjourney.

Figure 9: Multiple variations of an image depicting foggy weather conditions, all generated using the same
text prompt by Midjourney.
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Figure 10: Multiple variations of an image depicting foggy weather conditions, all generated using the same
text prompt by Midjourney.
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