
Efficient Expansion and Gradient Based Task Inference for Replay Free
Incremental Learning: Supplementary

Soumya Roy
Amazon

meetsoumyaroy@gmail.com

Vinay Verma
Amazon/Duke University

vinayugc@gmail.com

Deepak Gupta
Amazon

deepakgupta.cbs@gmail.com

In this supplementary material, we present additional ab-
lation results and document our experimental settings.

1. Additional Ablations

1.1. Influence of seeds

We use 5 different seeds to understand how the results
of our proposed method change with different seed values.
The seed value impacts our method in four different ways
- network initialization, sample order, random augmenta-
tion and class order. The question of seed influence is more
important in adaptive parameter growth (APG) than static
parameter growth (SPG) as APG uses task complexity to
grow the model. As is clear from Table 1, our reported
results are below the seed mean and reasonably stable for
different seed values on all three splits of CIFAR-100. In
Table 1, we also provide the parameter growth of a method
averaged over all seeds and task sequences. It is interest-
ing to note that the average parameter growth of the APG
model is remarkably stable for different seeds. Thus, we
can conclude that our methods are robust under different
experimental conditions.

1.2. Task Prediction

For the sake of completeness of this paper, we present the
average task prediction accuracy on the CIFAR100/5 split in
Table. 2.

1.3. Task-wise accuracy

We present the task-wise accuracy of the SPG model on
different splits of CIFAR-100 in Fig. 1. Since this is the
CIL scenario, the accuracy of a task i refers to the average
incremental accuracy till task i. To avoid clutter, we only
present results of important baselines. It should be noted
that different methods have different first task accuracies as
they have different optimization hyperparameters and ex-
pansion/regularization strategies. For example, EFT [8] ex-
pands from the first task while IL2A [12] works better with
the Adam optimizer [4]. Similarly, the results for task-wise

accuracy of the SPG model on different splits of ImageNet-
100 is shown in Fig. 2.

2. Experimental Settings

In this section, we provide details about our hyperparam-
eter settings and baselines.

2.1. CIFAR-100

2.1.1 Training hyperparameters

Since EFT [8] is our best performing baseline, we borrow
the class order and hyperparameter settings (including seed)
from their publicly available code. We train our model for
250 epochs with batch size of 128, initial learning rate of
0.01, learning rate drop of 0.1 at 100, 150 and 200 epochs,
SGD optimizer with momentum of 0.9 and weight decay of
5e− 3.

We use ResNet-18 [2] architecture for CIFAR datasets to
evaluate our method. It should be noted that we train batch
norm and linear layers from scratch for each task.

2.1.2 Expansion hyperparameters

We follow the same expansion hyperparameters for every
task sequence. Let α1, α2, α3 and α4 be the number of
filters used for creating the four residual blocks (using the
make layer() function in standard PyTorch implementa-

tion of ResNet-18 1). For each task, we increase the filters
as follows:

α1 = α1 +1, α2 = α2 +5, α3 = α3 +10, α4 = α4 +10
(1)

For the first task, α1 = 64, α2 = 128, α3 = 256 and α4

= 512 which is the standard ResNet-18 filter distribution.
The criterion for selecting this hyperparameter is that we
wanted to have an average parameter growth of around 4%
like EFT [8].

1github.com/pytorch/vision/blob/main/torchvision/models/resnet.py

1



Figure 1. Task-wise CIL results of SPG model on 5, 10 and 20 splits of CIFAR-100.



Figure 2. Task-wise CIL results of SPG model on 5, 10 and 20 splits of ImageNet-100.



Method 5 10 20

5 seeds (SPG) [4.1%] 59.8 ± 0.5 50.8 ± 0.7 36.9 ± 0.7
Reported (SPG) [4.1%] 59.4 50.6 35.6

5 seeds (APG) [3.6%] 59.3 ± 0.5 50.8 ± 0.5 37.4 ± 0.7
Reported (APG) [3.6%] 59.2 50.5 36.4

Table 1. Mean and standard deviation for different splits of CIFAR-100. [X%] shows the average parameter growth of the model over all
task sequences.

Methods Accuracy

Ensemble Class Prediction [3] 39.8
Entropy [8] 57.7
cross-entropy 57.2
∇(cross-entropy) + mean filters 58.8
∇(cross-entropy) + aug + mean filters 61.3
∇(cross-entropy) + entropy aug 61.2

∇(cross-entropy) + entropy aug + mean filters 61.9

Table 2. Average task prediction accuracy till last task for different
task prediction methods on CIFAR100/5 split.

For adaptive parameter growth, we define the minimum
filter growth as:

α1 = α1+1, α2 = α2+1, α3 = α3+1, α4 = α4+1 (2)

The maximum filter growth is defined using Eq. 1.

2.1.3 Augmentations

For class incremental learning (CIL), we apply 10 instances
of a random data augmentation scheme, along with the stan-
dard unaugmented test sample, to create the batch Xk (i.e.,
A = 11). It should be noted that we use the same random
data augmentation scheme for task prediction that we use
for training the network. Our data augmentation scheme is
same as EFT [8], i.e., from PyTorch library, we use:

1. RandomCrop(32, padding=4)

2. RandomHorizontalFlip()

3. RandomRotation(10)

2.1.4 Baselines

We borrow most of the baseline results from the EFT paper.
We also run the publicly available code of IL2A [12] using
our class order, split (5/10/20) and seed setting. Results
for SSRE [13] and FeTrIL [6] are obtained by running the
PyCIL [11] framework using our class order, split and seed
settings. It should be noted that in the main paper, we define
average incremental accuracy as the average accuracy for all
seen classes.

2.2. Tiny ImageNet

2.2.1 Training hyperparameters

Like CIFAR-100, we borrow the class order, hyperparame-
ter settings (including seed) and baselines from the EFT [8]
paper. We train our model for 140 epochs with batch size of
128, initial learning rate of 0.01, learning rate drop of 0.1
at 70, 100 and 120 epochs, SGD optimizer with momentum
of 0.9 and weight decay of 5e− 4. To evaluate our method,
we use the VGG-16 [7] architecture with batch norm for the
Tiny ImageNet dataset.

2.2.2 Expansion hyperparameters

If α1,j is the original number of filters for layer j in VGG-
16 and αi,j are their values before task i + 1, then for task
i+ 1, we increase the filters as follows:

αi+1,j = αi,j + 1 if α1,j = 64 or 128

αi+1,j = αi,j + 8 if α1,j = 256 or 512 (3)

For adaptive parameter growth, we define the minimum fil-
ter growth as:

αi+1,j = αi,j + 1

We define the maximum filter growth using Eq. 3.

2.3. ImageNet-100

2.3.1 Training hyperparameters

We use the same class subset, class order and hyperparame-
ter settings as DER [9]. We train our model for 120 epochs
(unlike DER, we do not warm up) with batch size of 256,
initial learning rate of 0.1, learning rate drop of 0.1 at 30,
60, 80 and 90 epochs, SGD optimizer with momentum of
0.9 and weight decay of 5e− 4.

We use ResNet-18 [2] architecture for ImageNet dataset
to evaluate our method. It should be noted that we train
batch norm and linear layers from scratch for each task.

2.3.2 Expansion hyperparameters

We follow the same expansion hyperparameters as CIFAR-
100, except for the ImageNet-100/20 split. If α1, α2, α3



and α4 are the number of filters used for creating the four
residual blocks (using the make layer function in stan-
dard PyTorch implementation of ResNet-18), then for each
task in ImageNet-100/20 split, we increase the filters as fol-
lows:

α1 = α1+2, α2 = α2+10, α3 = α3+10, α4 = α4+10
(4)

For the first task, α1 = 64, α2 = 128, α3 = 256 and α4

= 512 which is the standard ResNet-18 filter distribution.
This is because the ImageNet-100/20 split is harder than the
corresponding CIFAR-100/20 split. For adaptive parameter
growth and ImageNet-100/20 split, we define the minimum
and maximum filter growths using Eq. 2 and Eq. 4 respec-
tively.

2.3.3 Augmentations

For class incremental learning (CIL), we apply 20 instances
of a random data augmentation scheme, along with the stan-
dard unaugmented test sample, to create the batch Xk (i.e.,
A = 21). It should be noted that we use the same random
data augmentation scheme for task prediction that we use
for training the network. Our data augmentation scheme is
same as [1], i.e., from PyTorch library, we use:

1. RandomResizedCrop(224)

2. RandomHorizontalFlip()

3. ColorJitter(brightness=63 / 255)

2.3.4 Baselines

We run the baselines LwF [5], EFT [8] and IL2A [12] us-
ing their publicly available code. Results for SSRE [13] and
FeTrIL [6] are obtained by running the PyCIL [11] frame-
work. We use the same class subset, class order and seed
for all our baseline experiments. It should be noted that in
the main paper, we define average incremental accuracy as
the average accuracy for all seen classes.

2.4. Generative (GAN) Continual Learning

We choose the StackGAN-v2 [10] architecture for the
incremental GAN experiment. StackGAN-v2 contains four
blocks in the generator and discriminator networks. In
the generator network, there are 1024, 512, 256, 128 filters
from first to the fourth block and the final image construc-
tion layer contains 64 filters. We extend the last layer
by 4 filters; hence the respective increase in filters are
64, 32, 16, 8 from first to the fourth block. During training
of the ith task, all the previous task parameters are frozen;
the parameter grows over the previous task parameters and
not just over the global parameter. In our approach, we only
grow the generator parameters and the discriminator is fixed

for all the tasks; without any constraint, the discriminator
parameter learns the current task. For the above discussed
filter growth, the generator achieves a growth rate of 11.5%.
We also observe that further filter growth shows better re-
sults. Our selected task sequences (cats, birds and churches)
are highly diverse. The cat images are generally indoor or
outdoor animal images; however, the next task (birds) are
in a highly complex background and with fine-grained in-
formation; so the adaptation of birds from cats is difficult.
Our model shows significant gains on the birds dataset using
only 11.5% extra parameters. The adaptation of churches
from the birds dataset (birds to buildings) is also very diffi-
cult. Our proposed model adapts to this dataset and shows
state-of-the-art results compared to the recent strong base-
lines.

2.5. Heterogeneous Task Sequence

We borrow the baselines and hyperparameter settings
(including seed) from the EFT [8] paper. To evaluate our
method, we use the VGG-16 [7] architecture with batch
norm.

SVHN→CIFAR10→CIFAR100: If αi,j is the number
of filters for layer j in VGG-16 before task i + 1, then we
increase the filters as follows:

α2,j = α1,j + 10

α3,j = α2,j + 10 if α1,j = 64 or 128

α3,j = α2,j + 20 if α1,j = 256 or 512

CIFAR100→CIFAR10→SVHN: If αi,j is the number
of filters for layer j in VGG-16 before task i + 1, then we
increase the filters as follows:

α2,j = α1,j + 10 if α1,j = 64 or 128

α2,j = α1,j + 20 if α1,j = 256 or 512

α3,j = α2,j + 10

2.6. Softwares

Experiments are run on a single V100 gpu using Linux,
Python 3.6 and PyTorch 1.7.1 softwares.

2.7. Input Processing

The data transformation scheme used in our method is
borrowed from EFT [8] for CIFAR-100 and Tiny ImageNet
datasets, while for ImageNet-100, we use the data transfor-
mation scheme used in [1]. The codes for both these meth-
ods are publicly available.



References
[1] Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas

Robert, and Eduardo Valle. Podnet: Pooled outputs distil-
lation for small-tasks incremental learning. In ECCV, 2020.
5

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. Computer
Vision and Pattern Recognition, 2016. 1, 4

[3] Gyuhak Kim, Changnan Xiao, Tatsuya Konishi, Zixuan Ke,
and Bing Liu. A theoretical study on solving continual learn-
ing. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022. 4

[4] Diederick P Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015. 1

[5] Zhizhong Li and Derek Hoiem. Learning without Forget-
ting. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2017. 5

[6] G. Petit, A. Popescu, H. Schindler, D. Picard, and B. Dele-
zoide. Fetril: Feature translation for exemplar-free class-
incremental learning. WACV, 2023. 4, 5

[7] Karen Simonyan and Andrew Zisserman. Very Deep Convo-
lutional Networks for Large-Scale Image Recognition. arXiv
preprint arXiv:1409.1556, 2014. 4, 5

[8] Vinay Kumar Verma, Kevin J Liang, Nikhil Mehta, Piyush
Rai, and Lawrence Carin. Efficient feature transformations
for discriminative and generative continual learning. In
CVPR, pages 13865–13875, 2021. 1, 4, 5

[9] Shipeng Yan, Jiangwei Xie, and Xuming He. Der: Dynam-
ically expandable representation for class incremental learn-
ing. In CVPR, pages 3014–3023, 2021. 4

[10] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiao-
gang Wang, Xiaolei Huang, and Dimitris N Metaxas. Stack-
GAN++: Realistic Image Synthesis with Stacked Generative
Adversarial Networks. Transactions on Pattern Analysis and
Machine Intelligence, 2018. 5

[11] Da-Wei Zhou, Fu-Yun Wang, Han-Jia Ye, and De-Chuan
Zhan. Pycil: A python toolbox for class-incremental learn-
ing, 2021. 4, 5

[12] Fei Zhu, Zhen Cheng, Xu-Yao Zhang, and Cheng-lin Liu.
Class-incremental learning via dual augmentation. NeurIPS,
34:14306–14318, 2021. 1, 4, 5

[13] Kai Zhu, Wei Zhai, Yang Cao, Jiebo Luo, and Zheng-
Jun Zha. Self-sustaining representation expansion for non-
exemplar class-incremental learning. In CVPR, pages 9286–
9295, 2022. 4, 5


	. Additional Ablations
	. Influence of seeds
	. Task Prediction
	. Task-wise accuracy

	. Experimental Settings
	. CIFAR-100
	Training hyperparameters
	Expansion hyperparameters
	Augmentations
	Baselines

	. Tiny ImageNet
	Training hyperparameters
	Expansion hyperparameters

	. ImageNet-100
	Training hyperparameters
	Expansion hyperparameters
	Augmentations
	Baselines

	. Generative (GAN) Continual Learning
	. Heterogeneous Task Sequence
	. Softwares
	. Input Processing


