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In this supplement to the main paper, we provide details
about the statistics of the ‘chairs and tables’ dataset(Sec. 1),
our rendering process (Sec. 2) and our model implementa-
tion (Sec. 3), as well as additional evaluation experiments
(Sec. 4). In Sec. 5, we provide visualizations of our tri-
modal embedding space (Sec. 5.1), additional qualitative
results (Sec. 5.3), and brief discussion of shape similarity
metrics (Sec. 5.4).

1. Data statistics

Text Shape

Category  Train Val Test Train Val Test

Chair 26257 3313 3206 5221 659 641
Table 33520 4122 4246 6700 827 851
Total 59777 7435 7452 11921 1486 1492

Table 1. ‘Chairs and tables’ statistics [2].

2. Render settings

For the rendering setup, we use Pyrender'. The object is
placed at the center (0, 0, 0). The camera is placed at (0, 1,
0.6) with the focal length set to 35mm and the sensor width
to 32mm while being pointed towards the center (0, 0, 0).
We render 12 images by rotating the camera 30 degrees per
render with render resolution set to 224.

3. Model details
3.1. Voxel encoder details

For the voxel encoder, we use a 5-layer sparse 3D CNN
architecture with input resolution 643. Tab. 2 shows the ar-
chitectural details. Here BN stands for Batch Normalization
and LR stands for Leaky ReL.U, each layer of convolution
is followed by normalization then activation.

*indicates equal contribution.
Uhttps://github.com/mmatl/pyrender

Layer Kernel Stride Channels BN LR
convl 3 1 32 Y Y
max_pooll 2 2 - - -
conv2 3 1 64 Y Y
max_pool2 2 2 - - -
conv3 3 1 128 Y Y
max_pool3 2 2 - - -
conv4 3 1 256 Y Y
max_pool4 2 2 - - -
conv> 3 1 512 Y Y
max_pool5 2 2 - - -
fc6 - - 512 N N

Table 2. Voxel encoder for resolution 643

3.2. Incorporating CLIP

To use CLIP [&] for our retrieval task, we feed 6 multi-
view images of an object into the image encoder for CLIP
separately then average the vectors to get the image embed-
ding. Specifically, we use the ViT-L/14 pretrained model
from CLIP. For retrieval, we encode the text using the pre-
trained transformer-based CLIP text encoder and then re-
trieve relevant shapes by taking the dot product of the text
and shape embeddings. We compared the zero-shot perfor-
mance of CLIP embedding to the embedding from CLIP
with additional MLPs (which is equivalent to taking the
cosine similarity) and found that the CLIP+MLP embed-
dings work better. For incorporating CLIP into our model,
we take the CLIP embeddings of each image, and project
the embeddings using a two-layer MLP. The projected em-
beddings of the 6 multi-view images are averaged, and the
weights of the MLP are trained using a Cross-Entropy loss.
We train using the Adam [6] optimizer until the validation
performance drops, with a learning rate of 0.00035 on A40.
For fast training, we preprocess the data and store frozen
clip embeddings in a cache.


https://3dlg-hcvc.github.io/tricolo/

Model #Params Resolution BS Memory
322 128 2.6GB
. 32 3.3GB
Bi(V) 6.6M 613 64 5.1GB
128 10.1 GB
256 18.3GB
642 2.7GB
1282 128 9.9GB
2
Bi(I) 133M 224 30.4 GB
32 2.6 GB
64 52GB
2
128 128 99GB
256  20.8 GB
Trid+V) 204M v643i1282 128 11.8GB

Table 3. Memory usage and number of parameters for the Bi(I),
Bi(V) and Tri(I+V) models.

3.3. Triplet loss

Given an anchor text embedding p;; and its positive
shape embedding ps,, we sample the semi-hard examples
Hsy, such that <Nt] ) :qu> < <Mtj ’ ,U'Sk> < <:u‘tj s NS_7‘> +ais
satisfied, where « is the margin. The semi-hard example
is sampled online by selecting from the mini-batch as in
Schroff et al. [9]. Semi-hard sampling has been shown to
work better than naive sampling or hard negative sampling
for triplet loss and is also used in Tang et al. [11]. We then
apply the triplet loss using the triplets (1, fis,, its, ), here
[s can be the voxel or image embeddings:

lj = Z ma‘X(<:u‘tj7.u“Sj> - </’L1‘J7,u€k> +OL,O) (1)
all satisfied k

3.4. Model size

We show the number of parameters and memory for
our models with different hyperparameters in Tab. 3. Here
BS stands for batch size. Bi(I) is trained with 6 multi-
view images and a ResNet-18 backbone. Tri(I+V) is
trained with voxel resolution 643 and image resolution
1282. Here, the memory usage shown is calculated using
torch.cuda.max.memory_reserved during training.

4. Additional experiments

We conduct additional experiments to investigate the im-
pact of image and voxel resolution (Sec. 4.1) and image
backbone architecture (Sec. 4.2) on text-to-shape retrieval.
We present the performance of our model on an extended
set of 13 object categories from ShapeNet [ ] (Sec. 4.3).

resolution RR@I1(1) RR@5(1) NDCG@5(T) MRR(1)

64 998 +£0.28 28.60+0.19 19.56+0.20 19.88£0.24

Bi(I) 128  11.61 +£0.20 30.65+0.19 21364023 21.46£0.25
224 1145+0.18 32.06 +0.22 22.01 +0.26 21.86 & 0.27

32 8454032 2600+035 17324020 17.72+0.19

Bi(V) 64 9594027 27.14+048 18.54+0.13 19.03 & 0.08

Table 4. Comparison of resolution settings on shape retrieval for
Bi(I) and Bi(V) on the validation set. We find that increasing the
resolution increases the performance.

Model RR@I(1) RR@5(1) NDCG@5(1) #Params

EfficientNet-BO  12.52 £ 0.22  32.53 +0.28 22.79 + 0.31 7.2M

Bi(I) ResNet-18  11.61 £0.20 30.65£0.19 21.36 +0.23 13.3M
ResNet-34  11.41 £0.21 30.68 £0.17 21.21 £0.25 23.4M

Table 5. Comparison of different architectures on shape retrieval
for Bi(I) on the validation set. We find that increasing the model
parameters actually decreases the performance from ResNet-18 to
ResNet-34. Using a more powerful model with fewer parameters
(i.e. EfficientNet), we see that the performance improves.

4.1. Resolution experiments

We conduct experiments for different resolutions of im-
ages (642, 1282 and 2242) and voxels (322 and 64°). In
Tab. 4 we see that the performance increases with higher
resolutions.

4.2. Image backbone experiments

We conduct experiments with different image backbones
for Bi(I) to see how different model sizes will impact the re-
trieval performance. The results are shown in Tab. 5. When
we increase model parameter size from ResNet-18 [5] to
ResNet-34 it can be seen that the performance drops, this is
in conflict with prior work [3, 8] on contrastive learning that
sees performance gains when using larger encoder models.
This could support our hypothesis that our dataset is rela-
tively small, and using bigger models will result in over-
fitting. To verify this we conduct another experiment us-
ing a model that uses fewer parameters but has comparable
performance to ResNet-152, namely EfficientNet-BO [10].
We see that EfficientNet-B0 performs better than ResNet-18
and ResNet-34. For our use case, it may be more desirable
to use models that are more lightweight, but still offer good
performance. Note that we don’t use EfficientNet-BO in our
main model because it actually uses more than 2x memory
in training compared to ResNet-18 due to the operations in
EfficientNet requiring more memory for backpropagation.

4.3. Retrieval on ShapeNet 13 categories

To show the effectiveness of our method for retrieval
beyond ‘chairs and tables’, we also collected a set of
descriptions for 11 additional categories of objects from
ShapeNet [1]. Using a similar setting as Chen et al. [2],
we asked Amazon Mechanical Turk workers to provide de-



Figure 1. Histogram of number of sentences for the 13 differ-
ent object categories ShapeNetCore. We collected additional sen-
tences for shapes other than ‘chairs and table’ to investigate the
performance of our models on a more diverse object dataset.

Text Image Voxels RR@1 RR@5 NDCG@5

ZS* CLIP CLIP - 681 1697 11.97
Bi(I) CLIP CLIP - 578 2017 13.03
Bil) GRU MVCNN - 844 2564 17.15

Bi(V) GRU 3D-CNN 887 2791 18.52

Trid+V) GRU MVCNN 3D-CNN  10.63  31.01 21.03

Table 6. Shape retrieval results on ShapeNet c13 val set. We ob-
serve a similar trend as on the ‘chairs and tables’ dataset.

scriptions for a random set of 5 objects. We exclusively en-
gaged high-quality workers (with acceptance rate of > 95%
on more than 200 HITs) from countries that have English
as a native language (US, Canada, Great Britain and Aus-
tralia). We collected up to 5 descriptions per object. This
together with the original ‘chairs and tables’ dataset, results
in a dataset with over 138K descriptions for 27, 510 objects
across 13 object categories (see Figure 1 for distribution of
sentences for each object category).

We use the same standard settings as in our Text2Shape
experiments with with 6 multi-view images, resolution 1282
and 643 for images and voxels respectively and a batch
size of 128. Experiments on this ShapeNet C13 dataset
show a similar trend as for the ‘chairs and table’ dataset,
with Tri(I+V) outperforming Bi(I) and Bi(V) (see Table 6).
Comparison with zero-shot CLIP (ZS*) shows that the pre-
trained CLIP model is able to retrieve some relevant shapes
in a zero-shot setting on this broader set of shapes, but
has lower performance. Our Bi(I) with GRU and MVCNN
trained from scratch is able to outperform the bimodal mod-
els with CLIP text and image encoder trained on the data,
but still underperforms Tri(I+V), showing the value of tri-
modal embedding. With more categories and less training
data for ShapeNet C13 compared to the ‘chairs and tables’
dataset, the pretrained CLIP embeddings is more effective
on ShapeNet C13.

5. Qualitative results and discussion

We provide visualizations of the embedding space
(Sec. 5.1), types of different errors(Sec. 5.2), addi-
tional qualitative examples of text-to-shape retrieval results
(Sec. 5.3) and a discussion of the shape similarity metrics
(Sec. 5.4).

5.1. Visualization for the embedding space

We visualize the joint embedding spaces for differ-
ent models by projecting our embeddings to 2D using t-
distributed stochastic neighbor embedding (t-SNE) [12].
The embedding spaces for the bimodal and trimodal mod-
els are shown in Fig. 2. We also take a closer look at the
Tri(I+V) embedding space in Fig. 3 and show that the em-
beddings of similar shapes cluster together.

5.2. Examples of error types

Fig. 4 shows examples of the types of errors we analyzed
in the main paper. These failure cases demonstrate potential
directions for future work.

5.3. Additional visualizations of retrieval results

Fig. 5 shows the best matching shapes each model re-
trieves for novel queries. These results show our network
can be used for easy and rapid search through large 3D col-
lections. We show qualitative comparisons of the models
in Fig. 6. From examples 1,4 and 5, we see that Bi(I) is
unable to match high-level words such as stretched, tennis
and picnic as well as Bi(V) and Tri(I+V). Examples 2 and
3 show that sometimes Bi(V) also proposes poor retrieval
results. Since Tri(I+V) considers both images and voxels,
it is more robust and retrieves fewer incorrect results than
Bi(I) and Bi(V) (examples 2,4,5). It is also challenging for
the models to match small details (nofch in example 3) and
the correct number of parts (single drawer in example 6).

5.4. Shape similarity metrics

In addition to measuring F'17 for 7 = 0.1 we also fol-
low prior shape retrieval work [7] and measure F'17 for
7 = 0.3,0.5, as well as the Chamfer Distance (CD), and
(Abstract) Normal Consistency (NC). We note that these are
all point-wise metrics and we sample 10K points uniformly
on the mesh surface of GT and retrieved shapes for comput-
ing these metrics. Note that both CD and F'17 depend on
the absolute scale of meshes. To compute them, we follow
Fan et al. [4] who define 1 unit as 1/10 of the largest length
of the ground truth’s bounding box and rescale the ground
truth and retrieved meshes individually. See Tab. 7 (which
expands on Tab. 3 from the main paper). While our results
show that the average of these metrics increases overall for
our best model, Tri(I+V), we find that these shape similar-
ity metrics are not very informative in measuring fine shape
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Figure 2. Joint embedding spaces for different models with t-SNE. The modalities are indicated by color (green for text, blue for image,
orange for voxel, and purple for image + voxel). Tables are indicated by x and chairs by ®. By training with the NT-XEnt contrastive loss,

we are able to push the different modalities together and separate embeddings for tables (lower right) and chairs (upper left).

RR@1(1) RR@5(f)  NDCG@5(f)  MRR(1) | CD() NC(1) F191(1) F193(1) F195(1)
Bi(I) 11.61 £0.20 30.65+0.19 21.36+0.23 21.46+0.25 | 2.01 £0.02 0.62+0.002 11.97 020 3437 +£0.31 48.89+0.36
Tri(T) 1219+ 045 3233 £0.60 22.544+0.54 22.62+049 | 1.91 £0.02 0.63+0.002 12.49+021 35.56+0.28 50.28 +0.29
Bi(V) 9.59+0.27 27.14+048 1854+£0.13 19.034+0.08 | 1.96+0.02 0.62+0.002 1221 +0.09 35.01+0.18 49.60 + 0.24
Tri(V) 9.83+021 27.75+0.35 1897+£0.21 19324020 | 1.894+0.03 0.63 £0.002 12.64+0.13 35754030 50.44 +0.37
Trid+V) 12.52 £0.28 32.67 = 0.61 22.87 +£0.46 22.68 +0.32 | 1.88 = 0.02 0.63 +0.001 12.85+0.17 36.02 +0.32 50.70 £ 0.35

Table 7. Comparison of bimodal and trimodal models for text-to-shape retrieval on the validation set. Models are trained with a batch
size of 128, solid color voxels at a resolution of 642, 6 multi-view images at a resolution of 1282 each. Having a trimodal embedding
(Tri(I),Tri(V)) gives better performance than the bimodal embeddings (Bi(I),Bi(V)). By summing the image and voxel representations
from the trimodal embeddings (Tri(I+V)), we can further improve retrieval performance.

details and do not always capture whether two shapes are
semantically similar. Nevertheless, these metrics are pop-
ular in 3D shape generation and retrieval literature and we

report them here for completeness.
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Figure 3. Detailed joint embedding space for Tri(I+V) with t-SNE. We also zoom in on four regions of the joint embedding space. It is
clear that similar shapes are close to each other in the embedding space.

Bi(I) Bi(V) Tri(I+V)

a black desk chair color mismatch big shape error a dark brown col- ’ W w
with two legs made ored wooden table
of metal piping
which join under the
back of the chair circular table with § / { / ?
along with arm rests glass \N/ \N/

@

and a split back rest

GT small shape error missing part chair with arm
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chair without arm N

Figure 4. Examples of the four types of error we analyzed in our Figure 5. Retrieved shapes from test set using Bi(I), Bi(V), and

manual analysis. Tri(I+V) for custom sentences. Note all models retrieve shapes
that match the color (dark brown), materials (wooden, glass),
shape (circular), and the presence and absence of chair arms.




1 A wooden designer chair, which is good for a stretched sitting.

Bi(I) a

Bi(V)

2 This short bar stool has a curved metal back in gray. The round cushion is blue and
appears to be vinyl.

Bi(I) ﬁ

Bi(V) *

Tri(I+V) ﬁ

3 a low seat with olive exterior and grey-ish interior. There is a notch where one’s neck
might rest. It looks to be raised on a very low pedestal, maybe brown in color

Bi(I)

=

&

- ~

Bi(V) & =

$ I
> w5 F L

Tri(I+V)

{




4 Four black legged blue coloured rectangle shaped tennis table %
S . A B B |
. A s A .
5 It looks like one you would use at a picnic. It is wooden and has bench seating. §
- # ¥ ¥ ¢
sy TR Q ‘§ L CHE N
;;;’ _— \
Tri(I+V) § § - % \'\\f{
6 Standard wooden small side table with a single drawer and bottom shelf '
Bi(I) ' " ' | ’ ' ’
Bi(V) ! ' ' ‘ i , ‘.

Figure 6. Examples of top 5 retrieved shapes from the validation set using Bi(I), Bi(V), and Tri(I+V). We can see that Bi(I) understands
abstract concepts such as stretched, tennis and picnic poorly (examples 1,4,5). It is also challenging to pick up on small details (notch in
example 3). Although the retrieval results of Tri(I+V) are not always the best among the three models (Bi(V) results are better for example
6), Tri(I+V) is the most stable overall and retrieves more results that are consistent with the description (examples 2.4,5).
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