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1. Rank2Tell Dataset

1.1. Example Scenarios

We show several frames from different scenarios of our
introduced dataset-Rank2Tell, in Fig. 1, 2, and 3 with in-
tentions of going straight, turning left, or turning right at
the intersection. These frames are extracted from the sce-
narios, while the ego vehicle is entering the intersection. As
shown, the ego vehicle’s intention (straight, right or left)
and speed (in mph) are displayed on the frames. Moreover,
Fig. 1, 2, and 3 show the annotators responses to vari-
ous close and open-ended visual questions in the form of
4W+1H (What, Which, Where, Why, How). Further, we
take the mode of the various importance levels from differ-
ent annotators as the final importance level. An agent with
High, Medium, and Low as the final importance level is
shown in red, yellow and green color.

The video corresponding to these scenarios is in the at-
tached supplementary video. The video provides a compre-
hensive overview of the different scenarios and the corre-
sponding annotations across time frames, offering a valu-
able insights in understanding the development of impor-
tance levels in complex driving situations.

In Fig. 1a, we observe that the ego vehicle’s intention
is to go straight. All five annotators deem the pedestrian
crossing the cross-walk and the stop sign to be important,
with the majority of them assigning a high importance level.
The visual attributes for the pedestrian, such as color of the
dress (top, bottom) and age, are captured in the Which cat-
egory. Similarly, the color of the stop sign is annotated as
the visual attribute for infrastructure. The Where (action at-
tributes) section shows the pedestrian’s action in the current
frame. Furthermore, the Where (location level-1, location
level-2, motion direction) category captures the pedestrian’s
location and motion direction according to the annotation
schema. The How section records the ego vehicle’s re-
sponse to the important agent. As the pedestrian crosses the
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cross-walk, the ego vehicle decides to yield. Since the anno-
tators can view the previous four seconds of the video, they
can understand the yielding behavior based on the change
in speed. Additionally, the Why category shows the diverse
reasons provided by the annotators based on their selected
importance level for the pedestrian. The annotations ef-
fectively capture the responses of 3W + 1H (What, Which,
Where, How) to generate a caption for the response to the
Why. These annotations demonstrate the usefulness of these
structured visual question answering methods in perceiving
risks and reasoning about them.

Moreover, in Fig. 1b, we see that the vehicle exiting the
intersection from the right side is considered of medium im-
portance by the majority of annotators, as it could influence
the ego’s behavior if it decides to make a lane change. Simi-
larly, in Fig. 1c, the vehicle exiting the intersection from the
right side is considered of high importance by the majority
of annotators, as the front end of the vehicle is dangerously
close to the ego vehicle, and the latter is slowing down to
avoid a collision.

In Fig. 2a, where ego intends to turn right at the inter-
section, the annotators assigned High and Medium impor-
tance levels to the pedestrians crossing the cross-walk on
the right of the ego-vehicle. Specifically, for the pedestrian
with ID 1 is marked as important by 4 out of 5 annotators,
while that with ID 2 is marked as important by only 1 anno-
tator. The difference in perceived importance levels comes
from various factors such as annotator’s driving experience,
age, gender, etc. The captions provided by annotators for
agent with ID 1, show consistency in reasoning. They all
capture the location, motion direction and the intention of
the ego vehicle to reason about the importance of an agent.
In Fig. 2b, the majority of annotators mark all pedestri-
ans as High important. This could be because of the close
proximity of the pedestrians, as compared to the pedestri-
ans in Fig. 2a. Further, Fig 2c shows that 3 and 5 annotators
marked the truck and the crossing pedestrian of High im-
portance, because they directly influence the ego’s decision.
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Figure 1. Example scenarios of Rank2Tell with ego intention to go straight at the intersection
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Figure 2. Example scenarios of Rank2Tell with ego intention to turn right at the intersection
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Figure 3. Example scenarios of Rank2Tell with ego intention to turn left at the intersection



However, 2 annotators didn’t mark the pedestrian to be of
any importance. This discrepancy in annotations could be
due to experienced drivers tending to consider only objects
in close proximity to be of high importance, which is the
truck in this case.

In Fig. 3a, the Sedan at the intersection, and the bicycle
turning left at the intersection are marked as High impor-
tance by 2 and 3 annotators respectively. In Fig. 3b and Fig
3c, the agents towards the left of the intersection are marked
as important by various annotators.

These annotations demonstrate the effectiveness of the
Rank2Tell dataset in capturing diverse responses of agents
and infrastructure with various intentions of ego vehicles.
The annotations show how annotators identified important
visual attributes, actions, and locations of the agents in the
scene, and how they reasoned about the importance of these
agents based on their potential impact on the ego vehicle.
The annotations also show that different annotators may as-
sign different levels of importance to the same agents, based
on their personal experience and perception of risk. This
highlights the need for a diverse dataset like Rank2Tell to
capture a range of perspectives and improve the robustness
of machine learning models for autonomous driving.

These examples show that estimating importance level
of various agents in the scene depends on various factors,
and we aim to provide comprehensive annotations of those
factors to address the problem of important agents classifi-
cation and natural language explaination.

1.2. Dataset Analysis

1.2.1 Diverse Annotations

The diversity in Rank2Tell is one of its strengths, as it
presents broad spectrum of diverse annotations. An agent’s
importance is annotated with the prior knowledge of ego ve-
hicle’s intention (left, right, straight) at the intersection. For
instance, if the ego car intends to turn right while an agent
is located on the left of the intersection, it is highly proba-
ble that none of the anno- tators will deem it as important.
In case a more conservative annotator identifies it as im-
portant, users have the flexibility to disregard the outliers to
calculate the groundtruth impor- tance, guided by various
heuristics tailored to their specific use case of the dataset,
since we plan to release all 5 anno- tators data with the re-
lease of the dataset. It also provides users the flexibility
to consolidate 4 levels of importance to 2 levels(important,
non-important), based on their use case.

1.2.2 Training, Validation and Testing Data

The Rank2Tell dataset consists of total of 116 recordings,
and we split the dataset into thress subsets of 70, 23, 23 sce-
narios for training, validation and testing data, respectively.

We use the same split across all the baselines experiments,
and report the results on the validation data.

Table 1a shows the distribution of various agent types
and their importance levels in the three data subsets. The
table shows the number of scenarios, and total frames in
the 3 data splits. Additionally, it shows the distribution
of 4 different agents types (vehicles, bicyclists, pedestri-
ans, infrastructure) and their annotated importance levels
by different annotators. For instance, it shows that 5283
vehicles are being annotated as of High importance in the
training data, while 2604 and 1818 vehicles are being an-
notated as of Medium and Low importance in the valida-
tion and testing data. This comprises 40.1%, 46.7%, and
38.7% of all important vehicles in the training, validation
and testing data. Further, vehicles with importance level as
Medium consists of 38.7%, 37.5% and 40.5% of important
vehicles in training, validation and testing data. And the
vehicles with importance level as Low consists of 21.1%,
15.7% and 20.7% of all important vehicles in training, vali-
dation and testing data. We observe comparable distribution
across other agent types, as shown in Table 1a. This distri-
bution indicates that the data splits consists of comparable
number of data samples for different importance levels. We
see similar distribution across other agents types- bicyclists,
pedestrians and infrastructures.

Table 1b shows the distribution of visual question an-
swering for 3 data splits. The dataset provides 29311 impor-
tance levels responses from various annotators across 9305
unique important agents in the training data. It is important
to note that the visual and action attributes of the agents
consist of multiple sub-attributes associated with features
such as color, age, and communicative and visual aspects.
Therefore, the numerical values associated with these at-
tributes are significantly higher than the number of unique
important objects.

1.2.3 Annotators’ data distributions

Figure 4 presents the relationship between different im-
portance levels and annotators’ personal information. The
dataset employs 43 unique annotators; however, due to pri-
vacy concerns, not all annotators share their personal infor-
mation. Thus, we have complete information for 35 annota-
tors, while 7 annotators only provided their gender and age,
and 1 annotator only provided their gender.

For the 116 scenarios in our dataset, the asked questions
resulted in a total of 2900 data points, out of which we
were able to collect 2585 (89.1% of the total). As shown in
Figure 4, there is a strong correlation between the number
of years of experience and importance ranking annotations.
Additionally, we observe a similar trend with respect to age.



Agents Importance

Data
#

Scenarios
#

Frames Vehicles Bicyclists Pedestrians Infrastructures

High Medium Low High Medium Low High Medium Low High Medium Low
Training 70 2364 5283 5101 2782 249 186 179 2997 1833 1540 8308 499 354
Validation 23 784 2604 2091 881 180 161 87 682 460 640 2556 110 47
Testing 23 685 1818 1905 973 62 145 122 416 437 218 2356 379 60

(a) Agents Importance level distribution for train, validation and test data split

Visual Question Answering

Data
All

Agents What Which Where How Why

Important and
Non-Important

Important
Agents Importance Types Visual

Attributes
Action

Attributes
Location
Level-1

Location
Level-2

Motion
Direction

Ego’s
Response Caption

Training 35839 9305 29311 22327 36295 47284 29311 29311 20150 29311 29311
Validation 11970 3285 10499 8289 12709 17782 10499 10499 7786 10499 10499
Testing 9719 2782 8891 7491 10291 13592 8891 8891 6096 8891 8891

(b) Distribution of Annotators’ VQA responses for train, validation and test data split

Table 1. Annotators’ data distribution

2. Implementation Details
2.1. Groundtruth Importance

Table 2 in the main paper highlights the consistency and
quality of importance level across 5 annotators. This is cal-
culated using mode of all 5 annotators importance levels as
the final importance of an agent in the scene. This includes
importance as well as non-importance levels. Nonetheless,
when transitioning to practical use cases of not underesti-
mating an agent’s importance, we use groundtruth as the
mode of only importance annotations, i.e if 2 of out 5 an-
notators deem an agent as important, we take the mode of
only 2 annotators, and not all 5. In cases of multiple modes,
we take the highest importance level as the groundtruth im-
portance. Table 2 shows the consistency using this method
for estimating the groundtruth importance. A consistency
of 20%, 40%, 60%, 80%, 100% indicates that all five an-
notators deem an object as important, while only 1, 2, 3,
4, and 5 annotators, respectively, provided the same im-
portance level as the mode. A consistency of 33.33% and
66.66% indicates that three annotators deem an object as
important, while only 1 and 2 annotators, respectively, pro-
vided the same importance level as the mode. Lastly, the
consistency of 50% indicates that if 2 annotators deem an
object as important, both provided different importance, and
if 4 annotators deem an object as importance, half (2) anno-
tators provided the same importance level, and 75% indi-
cates that 4 annotators deem an object as important, while
only 3 provided the same importance level as the mode.
It shows that for data instances with High, Low and Non-
Important as groundtruth importance, 89.3%, 83.20% and
100% of samples exhibited more than 60% consistency.

This suggests that annotators had a high level of agree-
ment on objects marked as High, Low and Non-important.
However, for data instances with Medium as the major-
ity importance, only 75.65% of samples had more than
60% consistency. This could be attributed to the ambigu-
ity between medium and high importance, and medium and
low importance. Nonetheless, consistency score doesn’t
demonstrate the quality of the dataset, but shows the agree-
ment/disagreement among annotators with a groundtruth as
final importance.

Agents Importance
Consistency Low Medium High

20 0 0 0
33.33 2.12 1.03 0.51

40 1.44 5.36 2.69
50 13.21 17.93 7.46
60 3.85 13.72 9.18

66.66 8.00 8.36 4.44
75 3.79 5.31 4.76
80 0.96 7.71 13.73
100 66.60 40.55 57.19

>=60 83.20 75.65 89.3

Table 2. Inter-Annotator consistency of importance annotation
based on mode of only importance annotations

2.2. Joint Model

2.3. 2D Deep-Feature extraction

The 2D deep feature extractor uses a sequence of RGB
images, depth images, semantic maps, ego vehicle’s iner-



tial data, and 2D bounding box of each objects in the scene.
The depth images are obtained by projecting the pointcloud
to the stitched camera view, and the segmentation maps
are obtained using DeepLabv3 on the stitched RGB im-
ages. Visual feature extractor adopts ResNet101 pretrained
on ImageNet dataset as the backbone. It takes in RGB im-
ages to generate object level features and global features
of all frames, which are then fed into Sequence Encoder
I to obtain image features v2D(j,A)

and vglobal,A. Depth
feature extractor adopts ResNet18 trained from scratch as
a backbone, and takes in concatenated depth and seman-
tic segmentation maps to generate object level and features
and global features of all frames, which are fed into Se-
quence Encoder III to obtain final features, v2D(j,DS)

and
vglobal,DS . To extract the features of each object from
v2D(j,A)

and v2D(j,DS)
, a ROIAlign pooling layer is added

before feeding to sequence encoder. The final visual fea-
ture of each object, and global context information is ob-
tained by concatenation as v2Dj = [v2D(j,A)

, v2D(j,DS)
],

vglobal = [vglobal,A, vglobal,DS ]. The ego vehicle features
vego are obtained using Ego State Feature Encoder, and the
bounding box features of other agents v2D(j,B)

, are obtained
using Sequence encoder II, as shown in Fig. 5 in the main
paper.

2.4. 3D Deep-Feature extraction

We represent the pointcloud data as P = (pi, fi) ∈
RNp×6, where pi ∈ R3, i = 1, 2, ...., Np are the coordi-
nates, and fi ∈ R3 are the additional features, representing
radius, confidence and curvature. The point cloud features
consist of < x, y, z, radius, confidence, curvature >
data points. Additionally, we utilize the 3D bounding boxes
of agents in the scene, obtained from LIDAR annotations,
as well as the instance and semantic labels associated with
each point cloud. The output of voting module is a set of
point clusters C ∈ RM×128, where M is the upper bound
of the number of proposals. We assume that the bounding
boxes of objects (i.e., vehicles, infrastructure, pedestrians,
and bicyclists) can be obtained using off-the-shelf detection
and tracking system in advance. Therefore, we leverage
the groundtruth 3D bounding boxes, and groundtruth ob-
jects coordinates information for the votenet model to ob-
tain bounding boxes features v3Dj,P

.
The final object level features are obtained by concate-

nating the corresponding 2D features and 3D features: vj =
[v2Dj , v3Dj ]

2.5. Relational Feature Extraction

The importance level ranking and reasoning of an ob-
ject in a scene are influenced by the state and appearance of
other objects in the scene. Thus, to capture the mutual in-
fluence and relations among objects, we use a graph neural
networks that models objects as nodes and their relations

as edges in a relational graph module. The module takes
in the concatenated object features and extracts both object
features vj and relational features ei,j between objects.

By applying a message passing mechanism over the
graph, the nodes can exchange information with their neigh-
bors, allowing them to update their features based on the
features of their neighbors. To model the relational (edges)
features, the module considers only the K nearest objects
surrounding the target object to limit the computation com-
plexity.

v → e : eij = f1
e ([vi, vj ]), (1)

e → v̄ : vi = fv(Σi ̸=je(i,j)), (2)

The final objects features are obtained by concatenating
the graph nodes features with the object relations, global
features, ego features, and the ego intentions IE : oj =
[vj , v̄j , vglobal, vego, IE ]

2.6. Importance Classification

The final object features is fed into the classifier to ob-
tain its importance class (high, medium, low or binary). The
classifier outputs the logits corresponding to different im-
portance level as y = [ŷ1, ..., ˆyn−1].

2.7. Captioning Decoder

The captioning module takes the object features (oj)
to generate caption with one token at a time, using GRU.
Similar to Scan2Cap [1], we add the relational features
between object j and its neighbor k to the corresponding
oj to obtain the final attention context feature set V r =
vr1, ..., v

r
j , ..., v

r
M , where vrj = oj + ΣM

k=1⌉jk. The inter-
mediate attention distribution over the context features are
defined as:

αt := softmax((VrWv + 1hh
T
t−1Wh)Wa)1a (3)

The attention module outputs the aggregated context
vector v̂t = ΣM

i=1Vr
i ⊙ αti to represent the attended ob-

ject and corresponding inter-object relation. The language
GRUs uses the v̂t and hidden state h2

t to predict the token
yt at current step t.

2.8. Training

The joint model predicts the importance of all agents
within the scene - both important and not-important. How-
ever, the model solely generates captions of important
agents. Subsequent to the Graph Neural Network (GNN)
module, the agents deemed non-important are systemati-
cally filtered out. This filtration utilizes the ground truth
importance level both during training and evaluation phases.



Such an approach ensures a fair comparison with other cap-
tioning baselines, which have been modified similarly to
exclude non-important agents based on the ground truth im-
portance level.

The training objective combines the caption loss and the
importance classification loss in the following manner:

L = αLimp + βLcap (4)

where α, β are the weights for the individual loss terms.
TO enforce the model to reduce the instances of falsely

underestimating an agent’s importance, we penalize the
Limp corresponding to different groundtruth (GT) and pre-
dictions (P) for different importance levels of high (H),
medium(M), low(L), and not-importance(NI) as follows:

Limp = ΣN
i=1Li (5)

Li =

{
λkLi, if (GT − P ) = k > 0.

Li, otherwise.
(6)

where Li is the cross-entropy loss for each object i.
For 4 classes, levels 0, 1 2 and 3 represent Non −

Important, Low, Medium and High importance, re-
spectively. For binary classes, levels 0 and 1 represent
Non− Important, and Important, respectively.

• Predicted Importance is 1 level lower than groundtruth
importance: If groundruth is High, prediction
is Medium, or groundtruth is Medium, predic-
tion is Low, or groundtruth is Low, prediction is
Not − Important (for 4 classes), or groundtruth is
Important, prediction is Not − Important (for 2
classes), we weigh the loss by λ1

• Predicted Importance is 2 level lower than groundtruth
importance: If groundruth is High, prediction is
Low, or groundtruth is Medium, prediction is Not−
Important, we weigh the loss by λ2

• Predicted Importance is 3 level lower than groundtruth
importance: If groundruth is High, prediction is
Not− Important, we weigh the loss by λ3

• Predicted Importance is higher than groundtruth im-
portance: groundruth is Not − Important, predic-
tion is High, or Medium or Low importance, or
groundruth is Low, prediction is High, or Medium,
groundtruth is Medium, prediction is High (for 4
classes), or groundtruth is Not − Important, predic-
tion is Important (for 2 classes), we weigh the loss
by 1

For joint model, we use the following values of parame-
ters: λ1 = λ2 = λ3 = 1, and α = β = 1

Method F1 (I) F1 (NI) Accuracy
Ours w/o actions 78.44 92.97 89.39
Ours w/ actions 78.27 93.01 89.42

Table 3. Quantitative Evaluation comparing the F1 scores for 2
importance levels of our joint model, with and without augmented
action features. I: IMPORTANT, NI: NON-IMPORTANT

Method C B-4 M R
Ours w/o actions 100.15 45.83 36.21 68.56
Ours w/ actions 107.14 47.45 36.75 69.41

Table 4. Quantitative Evaluation comparing the performance for
captions predictions of our joint model, with and without aug-
mented action features. C: CIDER, B-4: Bleu-4, M: Meteor, R:
Rouge

2.9. Importance level classification

For a fair comparison with the joint model, all three base-
lines [2, 4, 7] use the same feature extractor ResNet101 [3]
pre-trained on the ImageNet dataset with Feature Pyramid
Networks [5] on top. During training, we adopt stochas-
tic gradient descent with ADAM optimizer to learn the net-
work parameters. The model is trained for 100 epochs using
an initial learning rate of 0.0001 and a learning rate decay
of 10. All feature layers are jointly updated during train-
ing. For consistency, we maintain a fixed input resolution
of 5760 × 1200 and use a batch size of 32 for all experi-
ments.

2.10. Captioning Baselines

For Scan2Cap [1] baseline, we use 3D pointcloud data
with < x, y, z, radius, confidence, curvature > as the
pointcloud features. The point cloud features consist of
< x, y, z, radius, confidence, curvature > data points.
Additionally, we utilize the 3D bounding boxes of agents
in the scene, obtained from LIDAR annotations, as well as
the instance and semantic labels associated with each point
cloud. For a fair comparison with our proposed model, we
assume that the bounding boxes of objects, such as vehi-
cles, pedestrians, and bicyclists, can be obtained using off-
the-shelf detection and tracking systems in advance. Con-
sequently, we leverage the ground truth 3D bounding boxes
and object instance information to train the votenet module
to learn the bounding box features. This is a modified ver-
sion of the Scan2Cap model that does not perform object
detection and instead relies on the ground truth bounding
boxes information to learn the bounding box features. We
limit the maximum number of objects in a particular frame
to 64. However, it is important to note that our current work
does not include infrastructure due to the lack of available
3D pointcloud features for traffic lights, stop signs, speed
limit signs, etc. To ensure a fair comparison, we do not in-
clude infrastructure for the S&T [6] baseline as well. Nev-



Figure 4. Relationship between importance level (grouped by columns) and annotator personal information (grouped by rows). Each
annotator has been assigned a unique color, and is represented in each figure by a dot. From top row: (1) age in years, (2) driving
experience in years, (3) frequency of driving, either 1-rarely, less than once a month, 2-occasionally, about once a week, 3-frequently, more
than three times a week, (4) gender 1-male, 2-female, 3-not sure (5) rating of driving skill, 1-intermediate, 2-advanced.



ertheless, we plan to incorporate infrastructure in our future
extensions of this work.

2.11. Integrating Action Attributes

To demonstrate the usefulness of these annotations, we
conduct an ablation study where we integrate action at-
tributes (Which) with object features in a simple way within
the joint model. We concatenate one hot vector of action
attributes with object features before the GNN, and the re-
sults in Table 3 and Table 4 show superior performance of
the model as compared to those without action.
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