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The supplementary material provides further details of the
proposed approach, additional quantitative results, abla-
tions, and implementation details. We have released our
code on our project page: https://val.cds.iisc.
ac.in/C-SFTrans/. The remainder of the supplemen-
tary material is organized as follows:

• Section 1: Proposed Approach (Table 1, Algorithm 1)

• Section 2: Implementation Details

– Datasets (Section 2.1)

– Style augmentations (Section 2.2)

– Experimental Settings (Section 2.3)

• Section 3: Additional Comparisons (Tables 2)

• Section 4: Ablations on target-side goal task training
(Tables 3, 4, and 5)

1. Proposed Approach
We summarize all the notations used in the paper in Table 1.
The notations are grouped into the following 6 categories -
models, transformers, datasets, spaces, losses, and criterion.
Our proposed method has been outlined in Algorithm 1
Target adaptation losses. We use the Information Maxi-
mization loss [8] that consists of entropy loss Lent and di-
versity loss Ldiv .

Lent = − E
xt∈X

K∑
k=1

δk(fg(zc)) log δk(fg(zc)) (1)

Ldiv =

K∑
k=1

p̂k log p̂k = KL(p̂,
1

K
1K)− logK (2)

where δk(b) =
exp(bk)∑
i exp(bi)

is the kth element of softmax out-

put of b ∈ RK . The entropy loss Lent ensures that the
model predicts more confidently for a particular label and
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Table 1. Notation Table
Symbol Description

M
od

el
s f Backbone feature extractor

fg Goal task classifier
fn Style classifier

Tr
an

sf
or

m
er

s

zc Class token of last layer
zn Style token of last layer
NP Number of patch tokens
hl
n Non-causal heads of layer l
hl All attention-heads of layer l

hl \ hl
n Causal heads of layer l

WK Key weights
WQ Query weights
WV Value weights

D
at

as
et

s

Ds Labeled source dataset
Dt Unlabeled target dataset
ai Augmentation function i

D[i]
s ith augmented source dataset

D[i]
t ith augmented target dataset

(xs, ys) Labeled source sample
(x

[i]
s , ys, yd) Augmented source sample

xt Unlabeled target sample
(x

[i]
t , yd) Target augmented sample
x Clean input sample

xSCI Style Characterizing Input

Sp
ac

es

X Input space
Cg Label set for goal task
Zc Class token feature space
Zn Style token feature space

Z1, . . . ,ZNP
Patch tokens

L
os

se
s Lstyle Style Classification loss

Lcls Task Classification loss
Lent Entropy loss
Ldiv Diversity loss

C
ri

te
ri

on

β1i Importance weight for style feature
β2i Importance weight for task feature
CISi Causal Influence Score for head i
τ Threshold

the diversity loss Ldiv ensures that the predictions are well-
balanced across different classes. We optimize all param-
eters of the transformer backbone h, except the non-causal
heads hl

n.
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min
hl\hl

n,fg
E
Dt

[Lent + Ldiv] (3)

Pseudo-labeling. We use the clustering method of SHOT
[8] to obtain pseudo-labels. At first, the centroid of each
class is calculated using the following,

ck =

∑
xt∈X δk(fg(zc))zc∑
xt∈X δk(fg(zc))

(4)

The closest centroid is chosen as the pseudo-label for each
sample using the following cosine distance formulation,

ŷc = argmin
k

Dc(zc, ck) (5)

where Dc denotes the cosine-distance in the class-token fea-
ture space Zc between a centroid ck and the input sample
features zc. In successive iterations, the centroids keep up-
dating and the pseudo-labels get updates with respect to the
new centroids.

Attention heads in vision transformers. A ViT takes an
image x as input of size H ×W ×C and divides it into NP

patches of size (P, P ) each. The total number of patches
are NP = H×W

P 2 . In every layer, l, a head hl
i takes the

patches as input and transforms a patch into K,Q, V using
the weights WK ,WQ,WV , respectively. The self-attention
[16] is computed as follows,

hl
i = Softmax

(
QKT

√
dk

)
V (6)

where dk represents the dimension of the keys/queries.

2. Implementation details

2.1. Datasets

We use four standard object classification benchmarks for
DA to evaluate our approach. The Office-Home dataset
[17] consists of images from 65 categories of everyday ob-
jects from four domains - Art (Ar), Clipart (Cl), Product
(Pr), and Real World (Rw). Office-31 [12] is a simpler
benchmark containing images from 31 categories belonging
to three domains of objects in office settings - Amazon (A),
Webcam (W), and DSLR (D). VisDA [11] is a large-scale
benchmark containing images from two domains - 152,397
synthetic source images and 55,388 real-world target im-
ages. Lastly, DomainNet [10] is the largest and the most
challenging dataset due to severe class imbalance and di-
versity of domains. It contains 345 categories of objects
from six domains - Clipart (clp), Infograph (inf), Painting
(pnt), Quickdraw (qdr), Real (rel), Sketch (skt).

Algorithm 1 C-SFTrans Training Algorithm

Vendor-side training
1: Input: Let Ds be the source data, Dsty be the style

dataset, ImageNet pre-trained DeiT-B backbone h from
[19], randomly initialized goal classifier fg and ran-
domly initialized style classifier fn.
Non-causal attention heads selection

▷ Fig. 3A (main paper)
2: for iter < MaxTaskIters do:
3: Sample batch xi from Ds

4: Construct xSCI from xi

5: Compute Al
i using Eq. 3 (main paper)

6: Compute Lcls using Eq. 4 (main paper)
7: update β1j , β2j for head j by minimizing Lcls

8: end for
hl
n = {h : h ∈ hl, CISh > τ}

9: for iter < MaxIter do:
Goal task training ▷ Fig. 3B (main paper)

10: for iter < MaxTaskIters do:
11: Sample batch from Ds

12: Compute Lcls using Eq. 6 (main paper)
13: update θhl \ θhl

n
, θfg by minimizing Lcls

14: end for
Style classifier training ▷ Fig. 3B (main paper)

15: for iter < MaxDomainIters do:
16: Sample batch from Ds

sty

17: Compute Ldom using Eq. 1 (main paper)
18: update θhl

n
, θfn by minimizing Ldom

19: end for
▷ The two steps are carried out alternatively

20: end for
Client-side training

21: Input: Target data Dt, Target augmented DRI data
D[i]

t , source-side pretrained backbone h, goal classifier
fg and domain classifier fd.

22: for iter < MaxIter do:
Goal Task Training ▷ Fig. 3B (main paper)

23: for iter < MaxTaskIters do:
24: Sample batch from Dt

25: Compute Lim and Ldiv using Eq. 1, 2 (suppl.)
26: update θhl\θhl

n
, θfg by minimizing Lim+Ldiv

27: end for
Style classifier training ▷ Fig. 3B (main paper)

28: for iter < MaxDomainIters do:
29: Sample batch from Dt

sty

30: Compute Ldom using Eq. 1 (main paper)
31: update θhl

n
, θfn by minimizing Ldom

32: end for
▷ The two steps are carried out alternatively.

33: end for



Table 2. Single-Source Domain Adaptation (SSDA) results on the DomainNet dataset. * indicates results taken from [13].
ResNet-
101 [2] clp inf pnt qdr rel skt Avg.

clp - 19.3 37.5 11.1 52.2 41.0 32.2
inf 30.2 - 31.2 3.6 44.0 27.9 27.4
pnt 39.6 18.7 - 4.9 54.5 36.3 30.8
qdr 7.0 0.9 1.4 - 4.1 8.3 4.3
rel 48.4 22.2 49.4 6.4 - 38.8 33.0
skt 46.9 15.4 37.0 10.9 47.0 - 31.4

Avg. 34.4 15.3 31.3 7.4 40.4 30.5 26.6

CDAN
[9] clp inf pnt qdr rel skt Avg.

clp - 20.4 36.6 9.0 50.7 42.3 31.8
inf 27.5 - 25.7 1.8 34.7 20.1 22.0
pnt 42.6 20.0 - 2.5 55.6 38.5 31.8
qdr 21.0 4.5 8.1 - 14.3 15.7 12.7
rel 51.9 23.3 50.4 5.4 - 41.4 34.5
skt 50.8 20.3 43.0 2.9 50.8 - 33.6

Avg. 38.8 17.7 32.8 04.3 41.2 31.6 27.7

MIMFTL
[1] clp inf pnt qdr rel skt Avg.

clp - 15.1 35.6 10.7 51.5 43.1 31.2
inf 32.1 - 31.0 2.9 48.5 31.0 29.1
pnt 40.1 14.7 - 4.2 55.4 36.8 30.2
qdr 18.8 3.1 5.0 - 16.0 13.8 11.3
rel 48.5 19.0 47.6 5.8 - 39.4 32.1
skt 51.7 16.5 40.3 12.3 53.5 - 34.9

Avg. 38.2 13.7 31.9 7.2 45.0 32.8 28.1

MDD+
SCDA [21] clp inf pnt qdr rel skt Avg.

clp - 20.4 43.3 15.2 59.3 46.5 36.9
inf 32.7 - 34.5 6.3 47.6 29.2 30.1
pnt 46.4 19.9 - 8.1 58.8 42.9 35.2
qdr 31.1 6.6 18.0 - 28.8 22.0 21.3
rel 55.5 23.7 52.9 9.5 - 45.2 37.4
skt 55.8 20.1 46.5 15.0 56.7 - 38.8

Avg. 44.3 18.1 39.0 10.8 50.2 37.2 33.3

DeiT-B
[14] clp inf pnt qdr rel skt Avg.

clp - 24.3 49.6 15.8 65.3 52.1 41.4
inf 45.9 - 45.9 6.7 61.4 39.5 39.9
pnt 53.2 23.8 - 6.5 66.4 44.7 38.9
qdr 31.9 6.8 15.4 - 23.4 20.6 19.6
rel 59.0 25.8 56.3 9.16 - 44.8 39.0
skt 60.6 20.6 48.4 16.5 61.2 - 41.5

Avg. 50.1 20.3 43.1 10.9 55.5 40.3 36.7

SHOT-B
[8] clp inf pnt qdr rel skt Avg.

clp - 27.0 49.7 16.5 65.4 53.2 46.1
inf 46.4 - 45.9 7.4 60.6 40.1 40.1
pnt 54.6 25.7 - 8.1 66.3 49.0 40.7
qdr 33.3 6.8 15.5 - 23.8 24.0 20.7
rel 59.3 28.1 57.4 9.0 - 47.3 40.2
skt 64.0 26.5 55.0 18.2 63.8 - 45.5

Avg. 51.5 26.6 44.7 11.8 56.0 42.7 38.9

CDTrans∗
[19] clp inf pnt qdr rel skt Avg.

clp - 27.9 57.6 27.9 73.0 58.8 49.0
inf 58.6 - 53.4 9.6 71.1 47.6 48.1
pnt 60.7 24.0 - 13.0 69.8 49.6 43.4
qdr 2.9 0.4 0.3 - 0.7 4.7 1.8
rel 49.3 18.7 47.8 9.4 - 33.5 31.7
skt 66.8 23.7 54.6 27.5 68.0 - 48.1

Avg. 47.7 18.9 42.7 17.5 56.5 38.8 37.0

SSRT-B∗

[13] clp inf pnt qdr rel skt Avg.

clp - 33.8 60.2 19.4 75.8 59.8 49.8
inf 55.5 - 54.0 9.0 68.2 44.7 46.3
pnt 61.7 28.5 - 8.4 71.4 55.2 45.0
qdr 42.5 8.8 24.2 - 37.6 33.6 29.3
rel 69.9 37.1 66.0 10.1 - 58.9 48.4
skt 70.6 32.8 62.2 21.7 73.2 - 52.1

Avg. 60.0 28.2 53.3 13.7 65.3 50.4 45.2

C-SFTrans
(Ours) clp inf pnt qdr rel skt Avg.

clp - 26.6 53.6 23.6 71.4 54.6 46.0
inf 55.9 - 51.7 11.4 69.6 46.0 46.9
pnt 60.0 25.2 - 14.3 71.2 51.1 44.4
qdr 43.2 8.2 17.4 - 40.2 28.8 27.5
rel 60.4 28.1 56.5 12.2 - 49.8 41.4
skt 66.7 26.5 56.2 25.1 71.0 - 49.1

Avg. 57.2 22.9 47.1 17.3 64.7 46.1 42.5

2.2. Style augmentations

We construct novel stylised images using 5 label-
preserving augmentations on the original clean images to
enable non-causal factor alignment during the training pro-
cess. The augmentations are as follows:

1. FDA augmentation: We use the FDA augmentation
[20] to generate stylized images based on a fixed set of style
images [3]. In this augmentation, a given input image is
stylized by interchanging the low-level frequencies between
the FFTs of the input image and the reference style image.

2. Weather augmentations: We employ the frost and
snow augmentations from [5] to simulate the weather aug-
mentation. Specifically, we use the lowest severity of frost
and snow (severity = 1) to augment the input images.

3. AdaIN augmentation: AdaIN [3] uses a reference
style image to stylize a given input image by altering the
feature statistics in an instance normalization (IN) layer
[15]. We use the same reference style image set as in FDA,
and set the augmentation strength to 0.5.

4. Cartoon augmentation: We employ the cartooniza-
tion augmentation from [5] to produce cartoon-style images
with reduced texture from the input.

5. Style augmentation: We use the style augmentation
from [4] that augments an input image through random style
transfer. This augmentation alters the texture, contrast and
color of the input while preserving its geometrical features.

2.3. Experimental settings
In all our experiments, we use the Stochastic Gradient

Descent (SGD) optimizer [6] with a momentum of 0.9 and
batch size of 64. We follow [8] and use label smoothing in
the training process. For the source-side, we train the goal
task classifier for 20 epochs, and the style classifier until it
achieves 80% accuracy. On the target-side, we train the goal
task classifier for 2 epochs, and use the same criteria for the
style classifier as the source-side. The first 5 epochs of the
source-side training are used for warm-up with a warm-up
factor of 0.01. On the source-side, we use a learning rate of
8 × 10−4 for the VisDA dataset, and 8 × 10−3 for the re-
maining benchmarks. For the target-side goal task training,
we use a learning rate of 5 × 10−5 for VisDA, 2 × 10−3

for DomainNet, and 8 × 10−3 for the rest. Our proposed
method comprises an alternate training mechanism where
the goal task training and style classifier training are done
alternatively for a total of 25 rounds, which is equivalent to
50 epochs of target adaptation in [8]. For comparisons, we
implement the source-free methods DIPE [18] and Feature
Mixup [7] by replacing the backbone with DeiT-B. While
CDTrans [19] uses the entire domain for training and eval-
uation with the DomainNet dataset, we follow the setup of
[13] to ensure fair comparisons. We train on the train split
and evaluate on the test split of each domain.

3. Additional comparisons
We present additional comparisons with the DomainNet

benchmark in Table 2. Our method achieves the best results



Table 3. Sensitivity analysis of alternate training on Single-Source
Domain Adaptation (SSDA) on Office-Home. The goal task
epochs are varied from 1 to 5.

Epochs Ar � Cl Cl � Pr Pr � Rw Rw � Ar Avg.

1 63.7 79.8 79.8 75.7 74.8
2 70.0 86.8 87.6 82.5 81.7
3 69.9 86.7 87.5 82.3 81.6
5 70.6 87.7 88.5 82.3 82.2

Table 4. Ablation study for the three components of the target-side
goal task training. SSPL denotes self-supervised pseudo-labelling.

Method Lent Ldiv textitSSPL Avg.

Source-Only ✗ ✗ ✗ 76.4

C-SFTrans
✓ ✗ ✗ 74.0
✓ ✓ ✗ 79.7 (+5.7)
✓ ✓ ✓ 81.7 (+7.7)

among the existing source-free prior arts and outperforms
the source-free SHOT-B∗ by 3.6%. We also observe that C-
SFTrans surpasses the non-source-free method CDTrans by
an impressive 5.5%.

4. Ablations on target-side goal task training

(a) Target-side goal task training loss. Table 4 shows
the influence of the three loss terms in the target-side goal
task training - entropy loss Lent, diversity loss Ldiv and
self-supervised pseudo-labeling SSPL. We observe that us-
ing Lent alone produces lower results even compared to the
source baseline. On the other hand, using both Lent and
Ldiv significantly improves the performance, which high-
lights the importance of the diversity term Ldiv . Finally, we
obtain the best results when all three components are used
together for target-side adaptation, further showing the sig-
nificance of the pseudo-labeling step.
(b) Sensitivity analysis of alternate training. In our pro-
posed method, we perform style classifier training and goal
task training in an alternate fashion, i.e. the task classifier fg
is trained for a few epochs, followed by the training of the
style classifier fn until it reaches a certain accuracy thresh-
old (empirically set to 80%). In Table 3, we show the effect
of varying the number of epochs of the goal task training
from 1 to 5, and observe the impact on the goal task accu-
racy during non-causal factor alignment. We observe that
2 epochs of goal task training achieves the optimal balance
between target accuracy and training effort. We observe that
just a single epoch of task classifier training negatively im-
pacts the goal task performance. While 3 epochs achieves
the best performance, it involves significant training effort
for merely 0.5% improvement in the task accuracy. There-
fore, 2 epochs of goal task training achieves the optimal
balance between target accuracy and training effort.
(c) Selection of non-causal heads. We select a set of non-
causal attention heads based on their Causal Influence Score

Table 5. Sensitivity analysis on non-causal heads (%) for Single-
Source DA on 4 settings of Office-Home

λ Ar � Cl Cl � Pr Pr � Rw Rw � Ar Avg.

0.1 70.2 86.7 87.5 82.4 81.7
0.2 70.0 86.8 87.6 82.5 81.7
0.3 70.3 86.9 87.7 82.6 81.9
0.4 70.2 86.5 87.2 82.1 81.5

(CIS). We sort the CIS in descending order and select the
top λ% of heads satisfying the condition CIS > τ . In Table
5, we present the effect of altering this hyperparameter λ
on the overall performance. We observed that with a lower
value of λ, the pathways formed by non-causal heads do not
adequately extract and learn the non-causal factors, which
consequently hinders the domain-invariant alignment and
leads to non-optimal task performance. Similarly, increas-
ing λ too much reduces the ability of the network to learn
causal factors and leads to lower performance. Overall, our
approach is not very sensitive towards this hyperparameter.

Table 6. Ablation study for the effect of augmentations for target-
side goal task training.

No. of augs. Ar � Cl Cl � Pr Pr � Rw Rw � Ar Avg.

3 64.3 79.9 84.6 80.0 77.2
6 70.0 86.8 87.6 82.5 81.7

(d) Effect of augmentations. Table 6 demonstrates that
fewer augmentations for the style classifier significantly de-
teriorate the adaptation performance in comparison to the
full set of augmentations. This indicates that a more com-
plex style classification task better facilitates the non-causal
factor alignment. However, due to the scarcity of more com-
plex augmentations, we use the six outlined in Sec. 2.2
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