
APPENDIX: A Visual Active Search Frame-
work for Geospatial Exploration

In this appendix, we provide details that could not be in-
cluded in the main paper owing to space constraints, includ-
ing: (A) Performance of VAS under uniform query cost;
(B) VAS Pseudocode; (C) Policy architecture and train-
ing hyperparameter; (D) Search Performance Comparison
with Different Feature Extractor Module; (E) More Visual
Illustration of VAS and the Most Competitive Greedy Se-
lection baseline Method; (F) Assessment of VAS and other
Baseline Methods with a Different Evaluation Metric; (G)
Search Performance Comparison with Other Policy Learn-
ing Algorithm (PPO); (H) Sensitivity Analysis of VAS; (I)
Efficacy of TTA on Search Tasks involving Large Number
of Grids; (J) Saliency map visualization of VAS;

A. Performance of VAS under Uniform Query
Cost

In this section, we report the performance of VAS under
uniform query cost. The results are presented in the follow-
ing Table 8 for the small car target class and in Table 9 for
the building class from the xView dataset. We observe sig-
nificant improvements in performance of the proposed VAS
approach compared to all baselines, ranging from 11−25%
improvement relative to the most competitive greedy selec-
tion approach.

Table 8: ANT comparisons for the small car target class.

Method C = 12 C = 15 C = 18
random search (N = 30) 4.57 5.66 6.85
greedy classification (N = 30) 5.31 6.24 7.25
greedy selection [30] (N = 30) 5.47 6.45 7.46
active learning [37] (N = 30) 5.28 6.21 7.22
conventional AS [15] (N = 30) 4.86 5.97 6.92

VAS (N = 30) 6.03 7.24 8.24

random search (N = 48) 3.80 4.97 5.98
greedy classification (N = 48) 4.69 5.48 6.79
greedy selection [30] (N = 48) 4.92 5.81 6.98
active learning [37] (N = 48) 4.68 5.46 6.78
conventional AS [15] (N = 48) 3.96 5.45 6.14

VAS (N = 48) 5.62 6.81 7.86

random search (N = 99) 3.12 3.61 4.45
greedy classification (N = 99) 3.68 4.22 4.97
greedy selection [30] (N = 99) 3.81 4.52 5.28
active learning [37] (N = 99) 3.65 4.19 4.93
conventional AS [15] (N = 99) 3.24 3.87 4.61

VAS (N = 99) 4.61 5.64 6.55

We also present the results for large vehicle and ship tar-
get class from DOTA dataset in the following Table 10 and
11 respectively. We see the proposed VAS performs notice-
ably better than all baselines, ranging from 16–56% relative

Table 9: ANT comparisons for the building target class.

Method C = 12 C = 15 C = 18
random search (N = 30) 5.54 7.18 8.58
greedy classification (N = 30) 5.88 7.72 9.21
greedy selection [30] (N = 30) 6.39 7.95 9.52
active learning [37] (N = 30) 5.86 7.68 9.16
conventional AS [15] (N = 30) 5.76 7.37 8.87

VAS (N = 30) 7.56 9.02 10.41

random search (N = 48) 4.97 6.41 7.66
greedy classification (N = 48) 5.68 6.95 8.40
greedy selection [30] (N = 48) 5.93 7.26 8.71
active learning [37] (N = 48) 5.68 6.93 8.37
conventional AS [15] (N = 48) 5.22 6.67 7.84

VAS (N = 48) 6.85 8.29 9.65

random search (N = 99) 4.35 5.37 6.44
greedy classification (N = 99) 4.92 6.02 7.41
greedy selection [30] (N = 99) 5.38 6.53 7.79
active learning [37] (N = 99) 4.91 6.00 7.40
conventional AS [15] (N = 99) 4.55 5.64 6.75

VAS (N = 99) 6.75 8.27 9.46

to the state-of-the-art greedy selection approach. The exper-
imental outcomes in different settings are qualitatively sim-
ilar to the settings under Manhattan distance-based query
cost.

Table 10: ANT comparisons for the large vehicle target
class.

Method C = 12 C = 15 C = 18
random search (N = 36) 3.44 4.08 5.19
greedy classification (N = 36) 3.95 4.62 5.56
greedy selection [30] (N = 36) 4.18 4.86 5.89
active learning [37] (N = 36) 3.92 4.60 5.54
conventional AS [15] (N = 36) 3.71 4.22 5.28

VAS (N = 36) 5.14 6.05 7.00

random search (N = 64) 3.40 4.03 5.14
greedy classification (N = 64) 3.87 4.59 5.55
greedy selection [30] (N = 64) 3.99 4.77 5.67
active learning [37] (N = 64) 3.85 4.54 5.51
conventional AS [15] (N = 64) 3.61 4.12 5.26

VAS (N = 64) 6.30 7.65 8.90

B. VAS Pseudocode
We have included the pseudocode of our proposed Visual

Active Search algorithm in table 1.

C. Policy architecture, training hyperparame-
ter, and the details of TTA

In table 12, we detail the VAS policy architecture with
number of target grids asN . We use a learning rate of 10−4,



Table 11: ANT comparisons for the ship target class.

Method C = 12 C = 15 C = 18
random search (N = 36) 2.69 3.38 4.46
greedy classification (N = 36) 3.21 3.99 5.11
greedy selection [30] (N = 36) 3.44 4.23 5.32
active learning [37] (N = 36) 3.18 3.95 5.07
conventional AS [15] (N = 36) 2.97 3.56 4.77

VAS (N = 36) 4.58 5.34 6.23

random search (N = 64) 2.54 3.01 4.21
greedy classification (N = 64) 3.34 3.74 4.94
greedy selection [30] (N = 64) 3.62 3.95 5.10
active learning [37] (N = 64) 3.32 3.71 4.93
conventional AS [15] (N = 64) 2.87 3.38 4.53

VAS (N = 64) 5.04 6.50 7.38

Algorithm 1 The VAS algorithm.

Require: A search task instance (xi, yi); budget constraint C;
search policy ψ(xi, o,B) with parameters θ;

1: Initialize o0 = [0...0]; B0
= C; step t = 0

2: while Bt
> 0 do

3: ỹ = ψ(xi, o
t,Bt

)

4: j←Ð Samplej∈{Unexplored Grids}[ỹ]

5: Query grid cell with index j and observe true label y(j).
6: Obtain reward Rt

= y(j).
7: Update ot to ot+1 with o(j) = 2y(j) − 1.
8: Update Bt to Bt+1 with Bt+1

= Bt
− c(k, j) (assuming

we query k’th grid at (t − 1)).
9: Collect transition tuple (τ ) at step t, i.e., τ t = ( state

= (xi, ot,Bt
), action = j, reward = Rt, next state =

(xi, o
t+1,Bt+1

) ).
10: t ←Ð t + 1
11: end while
12: Update the search policy parameters, i.e., θ using REIN-

FORCE objective as in 3 based on the collected transition
tuples (τ t) throughout the episode.

13: Return updated search policy parameters, i.e., θ.

batch size of 16, number of training epochs 200, and the
Adam optimizer to train the policy network in all results.
We add a self-supervised head r to the VAS policy archi-
tecture for TTT. The architecture of self-supervised head is
detailed in table 13. We applied a series of 4 up-convolution
layers with intermediate ReLU activations followed by a
tanh activation layer on the semantic features extracted us-
ing ResNet34. For FixMatch, our VAS architecture remains
unchanged, and we apply only spatially invariant augmen-
tations (e.g auto contrast, brightness, color, and contrast)
and ignore all translation augmentations (translate X, trans-
late Y, ShearX etc.) to obtain the augmented version of the
input image. We update the model parameters after every
query step using a cross-entropy loss between a pseudo-
target and a predicted vector as described below. We define
the pseudo-target vector as follows. Whenever a query j is

successful (yj = 1), we construct a label vector as the one-
hot vector with a 1 in the jth grid cell. However if yj = 0, we
associate each queried grid cell with a 0, and assign a uni-
form probability distribution over all unqueried grids. Pre-
diction vector is the “logit” representation obtained from the
VAS policy. We used the Adam optimizer with a learning
rate of 10−4 for both TTT and FixMatch.

Table 12: VAS Policy Architecture

Layers Configuration o/p Feature Map size

Input RGB Image 3 × 2500 × 3000

Feat. Extraction ResNet-34 512 × 14 × 14

Conv1 c:N k:1 × 1 N × 14 × 14

Tile1 Grid State (o) N × 14 × 14
Tile2 Query Left (B) 1 × 14 × 14
Channel Concat Conv1,Tile1,Tile2 (2N + 1) × 14 × 14
Conv2 c:3 k:1 × 1 3 × 14 × 14

Flattened Conv2 588

FC1+ReLU (588− > 2N ) 2N

FC2 (2N− > N ) N

Table 13: Self-supervised head Architecture

Layers Configuration

Input: Latent Feature 36 × 14 × 14

1st Up-conv layer in-channel:36;out-channel:36;k:3 × 3;stride:2;padd:0

Activation Layer ReLU

2nd Up-conv layer in-channel:36;out-channel:24;k:3 × 3;stride:2;padd:1

Activation Layer ReLU

3rd Up-conv layer in-channel:24;out-channel:12;k:2 × 2;stride:4;padd:1

Activation Layer ReLU

4th Up-conv layer in-channel:12; out-channel:3; k:2 × 2; stride:2; padd:0

Normalization layer tanh

D. Search Performance Comparison with Dif-
ferent Feature Extractor Module

In this section, we compare the performance of VAS with
different feature extraction module. We use state-of-the-art
feature extraction modules, such as ViT [6] and DINO [4]
for comparison. The Vision Transformer (ViT) [6] is a
transformer encoder model (BERT-like) pretrained on a
large collection of images in a self-supervised fashion,
namely ImageNet-21k (a collection of 14 million images),
at a resolution of 224 × 224 pixels, with patch resolution
of 16 × 16. Note that, we use off the shelf pretrained ViT
model provided by huggingface (google/vit-base-patch16-
224-in21k). We call the resulting policy VAS-ViT. Similar to



ViT, DINO [4] is also based on transformer encoder model.
Images are presented to the DINO model as a sequence of
fixed-size patches (resolution 8x8), which are linearly em-
bedded. For our experiment, we use DINO pretrained on
ImageNet-1k, at a resolution of 224x224 pixels. For our ex-
periments, we use pretrained DINO model provided by hug-
gingface (facebook/dino-vits8). We call the resulting policy
as VAS-DINO. In table 14, 15 we report the performance
of VAS-ViT and VAS-DINO and compare them with VAS.

Table 14: ANT comparisons with different feature extraction
module for the small car target class on xView.

Method C = 25 C = 50 C = 75

VAS-DINO (N = 30) 4.56 7.41 9.83
VAS-ViT (N = 30) 4.64 7.47 9.86

VAS (N = 30) 4.61 7.49 9.88

VAS-DINO (N = 48) 4.52 7.41 9.59
VAS-ViT (N = 48) 4.56 7.44 9.68

VAS (N = 48) 4.56 7.45 9.63

Table 15: ANT comparisons with different feature extraction
module for the large vehicle target class on DOTA.

Method C = 25 C = 50 C = 75

VAS-DINO (N = 36) 4.56 6.75 8.03
VAS-ViT (N = 36) 4.60 6.82 8.09

VAS (N = 36) 4.63 6.79 8.07

VAS-DINO (N = 64) 5.27 8.44 10.45
VAS-ViT (N = 64) 5.31 8.51 10.48

VAS (N = 64) 5.33 8.47 10.51

E. More Visual Illustration of VAS and the
Most Competitive Greedy Selection base-
line Method

In this section, we provide additional visualization of
comparative exploration behaviour of VAS and and the most
competitive greedy selection baseline approach. In figure 7,
we compare the search strategy with large vehicle as a tar-
get class. In figure 8, we compare the behaviour with small
car as a target class. In figure 9, we analyze the exploration
behaviour with ship as a target class.

These additional visualizations again justify the efficacy
of VAS over the strongest baseline method.

Figure 7: Comparison of policies learned using VAS (left) and the greedy
selection baseline method (right).

Figure 8: Comparison of policies learned using VAS (left) and the greedy
selection baseline method (right).

Figure 9: Comparison of policies learned using VAS (left) and the greedy
selection baseline method (right).

F. Assessment of VAS and other Competitive
Baseline Methods with a Different Evalua-
tion Metric

We additionally compare the search performance of VAS
with all the baseline methods using a metric, which we call
Effective Success Rate (ESR). A naı̈ve way to evaluate the
proposed approaches is to simply use success rate, which is
is the fraction of total search steps K that identify a target
object. However, if K exceeds the total number of target
objects in x, normalizing by K is unreasonable, as even a
perfect search strategy would appear to work poorly. Con-
sequently, we propose effective success rate (ESR) as the
efficacy metric, defined as follows:

ESR =
# Targets Discovered

min{# Targets ,K}
(4)

Thus, we divide by the number of targets one can possibly
discover given a search budget K, rather than simply the
search budget.

F.1. Results on the xView Dataset with ESR as Eval-
uation Metric

We initiate our analysis by assessing the proposed
methodologies using the xView dataset, for varying search



budgets K ∈ {12,15,18} and number of grid cells N ∈
{30,48,99}. We also consider two target classes for our
search: small car and building. As the dataset contains
variable size images, take random crops of 2500 × 3000 for
N = 30, 2400×3200 pixels forN = 48, and 2700×3300 for
N = 99, thereby guarantees uniform grid cell dimensions
across the board.

Table 16: ESR comparisons for the small car target class
on the xView dataset.

Method K = 12 K = 15 K = 18
random search (N = 30) 0.598 0.632 0.704
greedy classification (N = 30) 0.619 0.675 0.718
greedy selection [30] (N = 30) 0.627 0.684 0.729

VAS (N = 30) 0.766 0.826 0.861

random search (N = 48) 0.489 0.517 0.558
greedy classification (N = 48) 0.512 0.551 0.589
greedy selection [30] (N = 48) 0.524 0.568 0.596

VAS (N = 48) 0.694 0.722 0.741

random search (N = 99) 0.336 0.369 0.378
greedy classification (N = 99) 0.365 0.384 0.405
greedy selection [30] (N = 99) 0.376 0.395 0.418

VAS (N = 99) 0.564 0.587 0.602

Table 17: ESR comparisons for the building target class on
the xView dataset.

Method K = 12 K = 15 K = 18
random search (N = 30) 0.663 0.681 0.697
greedy classification (N = 30) 0.701 0.734 0.767
greedy selection [30] (N = 30) 0.708 0.740 0.786

VAS (N = 30) 0.854 0.886 0.912

random search (N = 48) 0.526 0.547 0.556
greedy classification (N = 48) 0.548 0.569 0.585
greedy selection [30] (N = 48) 0.552 0.574 0.604

VAS (N = 48) 0.677 0.716 0.738

random search (N = 99) 0.443 0.462 0.483
greedy classification (N = 99) 0.460 0.482 0.504
greedy selection [30] 0.469 0.488 0.514

VAS (N = 99) 0.654 0.676 0.690

The results are presented in Table 16 for the small car
class and in Table 17 for the building class. We see sig-
nificant improvements in performance of the proposed VAS
approach compared to all baselines, ranging from ∼15–50%
improvement relative to the most competitive state-of-the-
art method, greedy selection.

F.2. Results on the DOTA Dataset with ESR as Eval-
uation Metric

We also conduct our experiments on the DOTA dataset.
We use large vehicle and ship as our target classes. In both
cases, we also report results with non-overlapping pixel
grids of size 200 × 200 and 150 × 150 (N = 36 and N = 64,
respectively). We again use K ∈ {12,15,18}.

Table 18: ESR comparisons for the large vehicle target
class on the DOTA dataset.

Method K = 12 K = 15 K = 18
random search (N = 36) 0.460 0.498 0.533
greedy classification (N = 36) 0.602 0.624 0.641
greedy selection [30] (N = 36) 0.618 0.637 0.647

VAS (N = 36) 0.736 0.744 0.767

random search (N = 64) 0.389 0.405 0.442
greedy classification (N = 64) 0.606 0.612 0.618
greedy selection [30] (N = 64) 0.612 0.618 0.626

VAS (N = 64) 0.724 0.738 0.749

Table 19: ESR comparisons for the ship target class on the
DOTA dataset.

Method K = 12 K = 15 K = 18
random search (N = 36) 0.491 0.564 0.590
greedy classification(N = 36) 0.602 0.629 0.657
greedy selection [30] (N = 36) 0.609 0.638 0.665

VAS (N = 36) 0.757 0.764 0.776

random search (N = 64) 0.334 0.379 0.417
greedy classification (N = 64) 0.524 0.541 0.559
greedy selection [30] (N = 64) 0.531 0.552 0.576

VAS (N = 64) 0.700 0.712 0.733

The results are presented in Tables 18 and 19, and
are broadly consistent with our observations on the xView
dataset, with VAS outperforming all baselines by ∼16–25%,
with the greatest improvement typically coming on more
difficult tasks (small K compared to N ).

G. Search Performance Comparison with
Other Policy Learning Algorithm (PPO)

We conduct experiments with other policy learning algo-
rithm, such as PPO. With PPO [23], the idea is to constrain
our policy update with a new objective function called the
clipped surrogate objective function that will constrain the
policy change in a small range [1 − ϵ,1 + ϵ]. Here, ϵ is a
hyperparameter that helps us to define this clip range. In
all our experiment with PPO, we use clip range ϵ = 0.2
as provided in the main paper [23]. We keep all other hy-
perparameters including policy architecture fixed. We call



the resulting policy VAS-PPO. In table 20, 21 we present
the result of VAS-PPO and compare the performance with
VAS. our experimental finding suggests that PPO doesn’t
yield any extra benefits in spite of having added complexity
overhead due to the clipped surrogate objective.

Table 20: ANT comparisons with different policy learning algo-
rithm for the small car target class on xView.

Method C = 25 C = 50 C = 75

VAS-PPO (N = 30) 4.15 6.82 9.16

VAS (N = 30) 4.61 7.49 9.88

VAS-PPO (N = 48) 4.03 6.87 9.02

VAS (N = 48) 4.56 7.45 9.63

Table 21: ANT comparisons with different policy learning algo-
rithm for the large vehicle target class on DOTA.

Method C = 25 C = 50 C = 75

VAS-PPO (N = 36) 4.01 6.24 7.56

VAS (N = 36) 4.63 6.79 8.07

VAS-PPO (N = 64) 4.89 7.93 10.12

VAS (N = 64) 5.33 8.47 10.51

H. Sensitivity Analysis of VAS

We further analyze the behavior of VAS when we inter-
vene the outcomes of past search queries o in the following
ways: (i) Regardless of the “true” outcome, we set the query
outcome to be “unsuccessful” at every stage of the search
process and observe the change in exploration behavior of
VAS, as depicted in fig 10, 11, 12. (ii) Following a similar
line, we also enforce the query outcome to be “successful”
at each stage and observe how it impacts in exploration be-
havior of VAS, as depicted in fig 10, 11, 12.

Early VAS steps are similar between strictly positive and
strictly negative feedback scenarios. This is due to the grid
prediction network’s input similarity in early stages of VAS.
The imagery and search budget are constant between the
two, and the grid state vector between the two are mostly
the same (as they are both initialized to all zeros). Follow-
ing from step 7 we see VAS diverge. A pattern that emerges
is that when VAS receives strictly negative feedback, it be-
gins to randomly explore. After every unsuccessful query,
VAS learns that similar areas are unlikely to contain objects
of interest and so it rarely visits similar areas. This is most
clear in figure 12 where we see at step 11 it explores an
area that’s completely water. It then visits a distinctive area

that’s mostly water but with land (and no harbor infrastruc-
ture). In strictly positive feedback scenarios we see VAS
aggressively exploit areas that are similar to ones its already
seen, as those areas have been flagged as having objects of
interest. Consider the bottom row for each of figures 10,
11, and 12. In figure 10, after a burn in phase we see VAS
looking at roadsides starting in step 9. In figure 11, VAS
seeks to capture roads. By step 15, VAS has an elevated
probability for nearly the entire circular road in the upper
left of the image. In figure 12, VAS seeks out areas that
look like harbors. Together these examples demonstrate a
key feature of reinforcement learning: the ability to explore
and exploit. Additionally, they show that VAS is sensitive
to query results and uses the grid state to guide its search.
In fig 13, 14, 15, we provide a similar visualization of VAS
under Manhattan distance based query cost.

I. Efficacy of TTA on Search Tasks involving
Large Number of Grids

We conduct experiments with number of grids N as
900. We train VAS using small car as target while eval-
uate with building as target class. We report the result
in table 22. We observe a significant improvement (up to
4%) in search performance by leveraging TTA in our pro-
posed VAS framework. Specifically, the performance gap
becomes more noticeable as the search budget increases.
We observe a similar trend when we train VAS with building
as target and evaluate using small car as target as presented
in table 23. Such results reinforce the importance of TTA in
scenarios (especially when the search budget is large) when
the search target differs between training and execution en-
vironments.

Table 22: Comparative results on xView dataset with small car
and Building as the target class during training and inference re-
spectively under uniform query cost setting.

Method C = 18 C = 24 C = 30 C = 60
without TTA (N = 900) 3.32 4.30 5.41 10.39
Stepwise TTA (N = 900) 3.38 4.37 5.54 10.68
Online TTA (N = 900) 3.41 4.42 5.60 10.81

Table 23: Comparative results on xView dataset with building
and small car as the target class during training and inference re-
spectively under uniform query cost setting.

Method C = 18 C = 24 C = 30 C = 60
without TTA (N = 900) 1.61 2.07 2.60 4.93
Stepwise TTA (N = 900) 1.63 2.10 2.66 5.04
Online TTA (N = 900) 1.66 2.15 2.71 5.12



(a) The original image

step 1 step 3 step 5 step 7 step 9 step 11 step 13 step 15

(b) (Top row) Query sequences, and corresponding heat maps (darker indicates higher probability), obtained using VAS while enforcing
the query outcomes at every stage being “unsuccessful”. (Bottom row) Query sequences, and corresponding heat maps (darker indicates
higher probability), obtained using VAS while enforcing the query outcomes at every stage being “successful”.

Figure 10: Sensitivity Analysis of VAS with a sample test image and large vehicle as target class under uniform query cost.

J. Saliency map visualization of VAS

In Figure (16,17,18), we show the saliency maps ob-
tained using a pre-trained VAS policy at different stages of
the search process. Note that, at every step, we obtain the
saliency map by computing the gradient of the output that
corresponds to the query index with respect to the input.
Figure 16 corresponds to the large vehicle target class while
the Figure 17 and Figure 18 correspond to the small vehi-
cle. All saliency maps were obtained using the same search

budget (K = 15). These visualizations capture different as-
pects of the VAS policy. Figure 16 shows its adaptability,
as we see how heat transfers from non-target grids to the
grids containing targets as search progresses. By compar-
ing saliency maps at different stages of the search process,
we see that, VAS explores different regions of the image at
different stages of search, illustrating that our approach im-
plicitly trades off exploration and exploitation in different
ways as search progresses. Figure 17 shows the effect of su-
pervised training on VAS policy. If we observe the saliency



(a) The original image

step 1 step 3 step 5 step 7 step 9 step 11 step 13 step 15

(b) (Top row) Query sequences, and corresponding heat maps (darker indicates higher probability), obtained using VAS while enforcing
the query outcomes at every stage being “unsuccessful”. (Bottom row) Query sequences, and corresponding heat maps (darker indicates
higher probability), obtained using VAS while enforcing the query outcomes at every stage being “successful”.

Figure 11: Sensitivity Analysis of VAS with a sample test image and car as target class under uniform query cost.

maps across time, we see that VAS never searches for small
vehicles in the sea, having learned not to do this from train-
ing with similar images. Additionally, we notice that the
saliency map’s heat expands from left to right as the time
step increases, encompassing more target grids, leading to
the discovery of more target objects. We observe similar
phenomena in figure 18. We can see that while earlier in
the search process queries tend to be less successful, as the
search evolves, our approach successfully identifies a clus-

ter of grids that contain the desired object, exploiting spatial
correlation among them. Additionally, at different stages of
the search process, VAS identifies different clusters of grids
that include the target object.



(a) The original image

step 1 step 3 step 5 step 7 step 9 step 11 step 13 step 15

(b) (Top row) Query sequences, and corresponding heat maps (darker indicates higher probability), obtained using VAS while enforcing
the query outcomes at every stage being “unsuccessful”. (Bottom row) Query sequences, and corresponding heat maps (darker indicates
higher probability), obtained using VAS while enforcing the query outcomes at every stage being “successful”.

Figure 12: Sensitivity Analysis of VAS with a sample test image and ship as target class under uniform query cost.



(a) The original image

step 1 step 3 step 5 step 7 step 9 step 11 step 13 step 15

(b) (Top row) Query sequences, and corresponding heat maps (darker indicates higher probability), obtained using VAS. (Middle row)
Query sequences, and corresponding heat maps (darker indicates higher probability), obtained using VAS while enforcing the query
outcomes at every stage being “unsuccessful”. (Bottom row) Query sequences, and corresponding heat maps (darker indicates higher
probability), obtained using VAS while enforcing the query outcomes at every stage being “successful”.

Figure 13: Sensitivity Analysis of VAS with a sample test image and large vehicle as target class under distance based query
cost.



(a) The original image

step 1 step 3 step 5 step 7 step 9 step 11 step 13 step 15

(b) (Top row) Query sequences, and corresponding heat maps (darker indicates higher probability), obtained using VAS. (Middle row)
Query sequences, and corresponding heat maps (darker indicates higher probability), obtained using VAS while enforcing the query
outcomes at every stage being “unsuccessful”. (Bottom row) Query sequences, and corresponding heat maps (darker indicates higher
probability), obtained using VAS while enforcing the query outcomes at every stage being “successful”.

Figure 14: Sensitivity Analysis of VAS with a sample test image and car as target class under distance based query cost.



(a) The original image

step 1 step 3 step 5 step 7 step 9 step 11 step 13 step 15

(b) (Top row) Query sequences, and corresponding heat maps (darker indicates higher probability), obtained using VAS. (Middle row)
Query sequences, and corresponding heat maps (darker indicates higher probability), obtained using VAS while enforcing the query
outcomes at every stage being “unsuccessful”. (Bottom row) Query sequences, and corresponding heat maps (darker indicates higher
probability), obtained using VAS while enforcing the query outcomes at every stage being “successful”.

Figure 15: Sensitivity Analysis of VAS with a sample test image and ship as target class under distance based query cost.



(a) The original image with query sequence.

step 1 step 5 step 10 step 15

(b) Saliency maps (red indicates high saliency), obtained using VAS at different stages of search process with large vehicle as target.

Figure 16: Saliency map visualization of VAS under uniform cost budget.



(a) The original image with query sequence.

step 1 step 5 step 10 step 15

(b) Saliency maps (red indicates high saliency), obtained using VAS at different stages of search process with small car as target.

Figure 17: Saliency map visualization of VAS under uniform cost budget.



(a) The original image with query sequence.

step 1 step 5 step 10 step 15

(b) Saliency maps (red indicates high saliency), obtained using VAS at different stages of search process with small car as target.

Figure 18: Saliency map visualization of VAS under uniform cost budget.


