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This supplementary presents the following details which
we could not include in the main paper due to space con-
straints:
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S1. Experimental Settings
S1.1. Dataset Details

We used the Pascal VOC [1] and MS-COCO [5] for
training and testing purposes. This section presents more
details about these datasets and the open-set object detec-
tion (OSOD) based evaluation settings.
Pascal VOC [1]: It contains VOC07 trainval set having
5, 011 images, and VOC12 trainval set having 11, 540 im-
ages with 20 labeled classes. Further, VOC07 val split set
is taken as a validation dataset.
MS-COCO [5]: This dataset comprises a training set of
more than 118, 000 images with 80 labeled classes While
the validation dataset (val2017) contains 5000 labeled im-
ages.

*Corresponding author

The process of closed-set training is executed on VOC07
trainval and VOC12 trainval set. While the close-set per-
formance is evaluated on the test split of VOC07. For
testing under open-set conditions, we follow the evaluation
protocol suggested in [3] where testing images having 20
VOC classes and 60 non-VOC classes [5] are employed and
categorized in two settings named as VOC-COCO-T1 and
VOC-COCO-T2.

• VOC-COCO-T1: In this setting, the 80 COCO
classes have been categorized into four groups, each
comprising 20 classes, based on their semantics [3, 4].
To create VOC-COCO-{20, 40, 60}, we utilized 5000
VOC testing images and {n, 2n, 3n} COCO images,
each of which contained {20, 40, 60} non-VOC classes
with semantic shifts, respectively.

• VOC-COCO-T2: In this setting, four datasets have
been constructed by gradually increasing the wilder-
ness ratio while utilizing n = 5000 VOC testing im-
ages and {0.5n, n, 2n, 4n} COCO images, disjointing
with VOC classes. Unlike the VOC-COCO-T1 setting,
the VOC-COCO-T1 aims to assess the model’s perfor-
mance under significantly greater wilderness, whereby
a substantial quantity of testing instances remain un-
seen during the training process.

S1.2. Implementation Details

In addition to experimental analysis on ResNet50 and
ConvNet backbone presented in main manuscript, we
present further analysis on Swin-T backbone [6]. To do
such experiments, we have opted to utilize AdamW as an
optimizer with a learning rate of 1e-4 and trained for 32,000
iterations with a 0.05 weight decay rate during training
phase. The training process has been facilitated by a sin-
gle GPU with a batch size of 6. For fair comparison, we
re-train the Faster R-CNN [9], DS [7], PROSER [11] and
OpenDet [3] methods on same configuration.
Open World Object Detection (OWOD) setting: To
demonstration how the proposed method performs in the



context of OWOD setting, we conducted evaluation accord-
ing to the ORE protocol [4]1, which was specifically de-
signed for OWOD and comprises four tasks aimed at as-
sessing the performance of OSOD and incremental learn-
ing. However, as our work is not concerned with incre-
mental learning, we restrict our evaluation to task 1. The
dataset utilized for task 1 comprises 16551 Pascal VOC im-
ages with 20 classes [1] for training and the 10246 testing
images having 20 VOC classes and 60 COCO classes [5]
for open-set evaluation. Here, we compare the proposed
method against the baseline Faster R-CNN [9] and its ora-
cle version2, in addition to OWOD methods (ORE [4], OW-
DETR [2], PROB [13]) and OSOD methods (OpenDet [3]
and Openset RCNN [12]).

S1.3. Generation of centerness targets

This section presents the procedure of generating the
centerness target, i.e., Ctargets for calculating the center-
ness loss. The corresponding steps are mentioned below.

• The initial step involves the conversion of the de-
fault ground-truth bounding box and proposal co-
ordinates, which are in (x1, y1, x2, y2) format, to
{cx, cy, h, w} format. This conversion results in
the center coordinates represented by cx and cy,
while h and w represent the height and width of
the bounding box or proposal, respectively. In the
case of a ground-truth box i and proposal box j,
the transformed bounding box and proposal targets
can be denoted by {cxgt(i), cygt(i), hgt(i),wgt(i)} and
{cxp(j), cyp(j), hp(j),wp(j)}, respectively.

• Subsequently, the differences in those quantities be-
tween the proposal box j and the ground truth boxes
are determined. Concerning the ground-truth box i,
the differences can be computed as follows.

dxij =
cxgt(i) − cxp(j)

wp(j)

dyij =
cygt(i) − cyp(j)

hp(j)

dwij = log

(
wgt(i)

wp(j)

)

dhij = log

(
hgt(i)

hp(j)

)
Here, we filter out the targets with negative values.
Finally, the centerness target for proposal box j and

1https://github.com/JosephKJ/OWOD
2An ’Oracle’ detector is a reference model that has access to all known

and unknown labels at any given point [4].

ground-truth box i can be calculated as given in [10].

Ctarget =

√
min(dxij , dyij)

max(dxij , dyij)
· min(dwij , dhij)

max(dwij , dhij)
,

where, min(·) and max(·) denote the minimum and
maximum operations.

S2. Ablation Studies & Analysis
This section presents additional ablation analysis to es-

tablish the efficacy of the proposed framework. All ablation
experiments are trained using ConvNet backbone to ensure
a fair comparison and evaluated on the VOC-COCO-40 set-
ting.

S2.1. Effect of prompts in Semantic Clustering
module

In the proposed framework, we have introduced a seman-
tic clustering module that utilizes a CLIP-based text en-
coder [8] to generate a 1024-dimensional text embedding.
In contrast to the original CLIP approach [8] that uses a
single prompt, seven prompts, or 80 prompts, we have uti-
lized the class name as the prompt. To see the impact of
using only the class name as a prompt, we conducted sev-
eral ablation experiments in which the proposed framework
is trained with different prompts in the semantic clustering
module. The corresponding findings, depicted in Figure S1,
indicate that the proposed framework with only class name
as prompt performs better than other settings in terms of
mAPk, APu, and HMP metrics.

Figure S1. Effect of different prompts in CLIP-based text encoder
of semantic clustering module on VOC-COCO-40 setting.

S2.2. Effect of different thresholds in entropy
thresholding evaluation mechanism

Figure S2 depicts the impact of varying threshold values
for entropy thresholding. Reducing the threshold value re-
sults in a decrease in the number of misclassified unknown
instances, which leads to an improvement in AOSE. Si-
multaneously, the WI is also improved by decreasing the



Table S1. Comparison with SOTA methods on VOC-COCO-T1 setting on Swin-T backbone. The best-performing measures are high-
lighted with bold font while the second-best is highlighted with underlined italic font. * indicates the re-trained methods.

Method VOC VOC-COCO-20 VOC-COCO-40 VOC-COCO-60
mAPk ↑ WI ↓ AOSE ↓ mAPk ↑ APu ↑ HMP ↑ WI ↓ AOSE ↓ mAPk ↑ APu ↑ HMP ↑ WI ↓ AOSE ↓ mAPk ↑ APu ↑ HMP ↑

Faster RCNN* [9] 78.74 11.39 21562 57.21 0.00 0.00 14.77 34074 53.73 0.00 0.00 12.13 39883 54.39 0.00 0.00
DS* [7] 78.08 9.58 16769 57.81 7.51 13.29 12.03 24946 54.54 5.35 9.74 9.69 27422 55.11 1.74 3.37
PROSER* [11] 78.94 13.96 19593 57.66 16.38 25.51 17.04 29567 54.29 11.29 18.69 13.62 33686 54.92 4.55 8.40
OpenDet* [3] 79.92 8.31 12743 59.79 15.87 25.08 10.40 18925 57.19 11.25 18.80 9.12 24073 57.89 4.38 8.14
Our (proposed) 79.27 8.12 10667 58.87 16.93 26.30 9.90 15895 56.24 11.85 19.58 8.73 20924 57.35 4.55 8.43

Table S2. Comparison with SOTA methods on VOC-COCO-T2 setting on Swin-T backbone. The best-performing measures are high-
lighted with bold font while the second-best is highlighted with underlined italic font. * indicates the re-trained methods.

Methods VOC-COCO-n VOC-COCO-2n VOC-COCO-4n
WI ↓ AOSE ↓ mAPk ↑ APu ↑ HMP ↑ WI ↓ AOSE ↓ mAPk ↑ APu ↑ HMP ↑ WI ↓ AOSE ↓ mAPk ↑ APu ↑ HMP ↑

Faster RCNN* [9] 13.61 16941 70.31 0.00 0.00 21.04 33888 64.48 0.00 0.00 28.29 67729 57.41 0.00 0.00
DS* [7] 11.99 11404 69.48 5.59 10.35 18.98 22664 63.87 7.24 13.01 26.22 45162 56.79 8.56 14.88
PROSER* [11] 14.56 14742 69.85 11.63 19.94 22.96 29224 64.32 14.30 23.40 30.87 58593 56.85 16.31 25.35
OpenDet* [3] 9.21 8896 75.28 12.48 21.41 15.46 17665 70.80 15.10 24.89 22.98 35365 64.34 17.04 26.94
Our (proposed) 9.29 7383 74.04 13.36 22.64 15.33 14706 69.72 16.23 26.33 22.62 29600 63.49 17.97 28.01

Figure S2. Effect of different thresholds in entropy thresholding
mechanism on VOC-COCO-40 setting.

threshold value. However, this reduction also coincides
with a decrease in precision scores. The decline in APu

arises from the incompleteness of annotations in the COCO
dataset, which results in numerous unknown predictions be-
ing classified as False Positives. As a result, there is a trade-
off between achieving a favorable AOSE score and main-
taining a high precision score through entropy threshold-
ing. We opt for a threshold of 0.85 for our experiments as it
yields balanced performance across all metrics.

S3. Experimental Results
In addition to the experimental analysis presented in the

main manuscript, we elaborate on some additional experi-
mental results.

S3.1. Additional Results

In addition to result comparison with existing OSOD
works on ResNet50 and ConvNet backbone, we have also
compared results on Swin-T [6] backbone. In Table S1,
we present a comparison on the VOC-COCO-T1 setting.

Table S3. Comparison with SOTA methods on VOC-COCO-0.5n
setting. This table is an extension of Table 2 in our main paper.
The best-performing measures are highlighted in bold font, while
the second-best is highlighted with an underlined italic font. *
indicates the re-trained methods.

WI ↓ AOSE ↓ mAPk ↑ APu ↑ HMP ↑
ResNet50 as Backbone
Faster RCNN [9] 9.25 6015 77.97 0.00 0.00
ORE [4] 8.39 4945 77.84 1.75 3.42
DS [7] 8.30 4862 77.78 2.89 5.57
PROSER [11] 9.32 5105 77.35 7.48 13.64
OpenDet [3] 6.44 3944 78.61 9.05 16.23
Openset RCNN [12] 6.66 3993 77.85 — —
Our (proposed) 5.21 3363 76.06 12.70 21.77
ConvNet-small as Backbone
Faster RCNN* [9] 8.64 5769 82.68 0.00 0.00
DS* [7] 8.23 5522 80.41 3.49 6.69
PROSER* [11] 7.82 5054 82.00 11.33 19.91
OpenDet* [3] 5.30 3789 82.26 10.37 18.42
Our (proposed) 5.05 3548 82.74 13.96 23.89
Swin-T as Backbone
Faster RCNN* [9] 8.40 8471 74.66 0.00 0.00
DS* [7] 7.30 5753 73.81 4.03 7.64
PROSER* [11] 9.19 7414 74.36 9.61 17.02
OpenDet* [3] 5.28 4397 78.49 10.10 17.90
Our (proposed) 5.46 3717 77.57 11.33 19.77

Here, we can see that the proposed method improves WI
by 2− 5% and AOSE by 2000− 3000 than previous best-
performing PROSER [11] and OpenDet [3] results in all
dataset settings. We also show improvements as high as 5%
on APu and 4% on HMP, on VOC-COCO-40 compared to
previous best-performing results. In VOC-COCO-60, the
proposed method obtains a better APu score of 4.55 similar
to PROSER [11]; however, it outperforms PROSER model
in mAPk by a gain of 4.4%. Moreover, the comparison
of VOC-COCO-T2 setting is presented in Table S2, where
the proposed method performs better than other methods in
terms of AOSE, APu and HMP metrics in all settings. We
show a gain of 5−8% in APu, 4−6% in HMP and improves
AOSE by 1500− 5500 than OpenDet [3].



Figure S3. Visual comparison between our proposed and other methods. (Zoomed-in for better view)



Due to limited space in our main paper, we also re-
port the results on VOC-COCO-0.5n in Table S3 based
on ResNet50, ConvNet and Swin-T backbones. Here, one
can observe that the proposed method outperforms exist-
ing methods by a significant margin in all cases except in
mAPk from the ResNet50 backbone-based comparison.

S3.2. Comparison on OWOD setting

We evaluate the proposed method in the context of
OWOD setting, i.e., task 1 as suggested in [4] and compare
the results against existing methods, presented in Table S4.
This analysis reveals that the proposed method performs
better when employed with a ResNet50 backbone than other
methods in terms of WI and AOSE. Furthermore, when
used with a ConvNet backbone, our proposed method im-
proves the performance further and obtains significant per-
formance than other methods.

Table S4. Comparison with OWOD based task 1 evaluation set-
ting [4]. The best-performing measures are highlighted with bold
font. † indicates results obtains from OpenDet [3] paper, while ††
indicates results from Openset-RCNN [12] paper.

Method OWOD-Task-1
WI ↓ AOSE ↓ mAPk ↑

Faster R-CNN (Oracle)† [9] 4.27 6862 60.43
Faster R-CNN† [9] 6.03 8468 58.81
ORE† [4] 5.11 6833 56.34
OW-DETR†† [2] 5.71 10240 59.21
PROB [13] — — 59.50
OpenDet [3] 4.44 5781 59.01
Openset-RCNN [12] 4.67 5403 59.34
Our (ResNet50) 3.76 5145 57.44
Our (ConvNet) 3.52 4616 61.51

S3.3. Additional Qualitative Results

In addition to quantitative analysis, we have provided
qualitative results in Figure S3 to demonstrate the improve-
ment of our method over baseline methods such as Faster
RCNN [9]), PROSER [11] and previous best-performing
OpenDet [3]. It can be visualized that the proposed method
accurately classifies unknown objects that are semantically
closer to known classes, which other methods fail to do.
For example, Faster R-CNN [9] and PROSER [11] misclas-
sify ‘goat’ as ‘cow’ due to their semantic similarity (see 1st

row of Figure S3). However, our model, having learned
semantic-based clusters, correctly labels ‘goat’ as the ‘un-
known’ class. It can also be observed that other methods
misclassify the ‘giraffe’ as either ‘cow’, ‘sheep’, ‘dog’ or
’horse’ as depicted in 3rd row in Figure S3. In contrast,
our proposed method accurately identifies it as ‘unknown’.
Similarly, other models misclassify ‘bed’ as ‘sofa’ due to
their semantic similarity. At the same time, the proposed
method predicts it accurately as an unknown class (as illus-
trated in the last row in Figure S3).

S3.4. Failure Case Analysis

In Figure S4, we present several instances where our
model fails to perform well. The proposed framework de-
tects false positive ’unknown’ objects in all three images.
We posit that this problem may arise due to a limitation of
the object focus loss and its tendency to promote additional
unknown detection. As a result, in certain cases, this mech-
anism may detect objects that are not even present.

Figure S4. failure cases.
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