
BirdSAT: Supplementary Material

A. Dataset
Data Preparation. We downloaded the entire iNat-

uralist 2021 dataset from the iNAT Competition GitHub
(https://github.com/visipedia/inat_
comp/tree/master/2021). We sliced the dataset to
include only birds using the value Aves in category class
key. This resulted in 414,847 samples in training and
14,680 samples in testing. The maximum and minimum
samples per species were 300 and 152 respectively. Then,
we applied a minimal filter to remove entries with missing
geolocations or timestamps. This resulted in dropping only
888 out of 414,847 (0.2%) observations in training. In
testing, we dropped 29 out of 14,860 (0.1%).

Dataset Details. The total number of samples in train-
ing and testing were 413,959 and 14,831 respectively. The
maximum and minimum samples per species after filtering
remained the same as before. The distribution of samples
per species and per month is shown in Figure ??1. As is
seen, the distribution of samples across the species did not
change significantly after filtering. Further, the even dis-
tribution of samples across the species comes out-of-the-
box from the original dataset. Finally, we collected cor-
responding satellite imagery for each bird sample using
the geolocation present in the dataset. This was done by
issuing WMS requests to the Sentinel-2 Cloudless server
(https://s2maps.eu/).

B. Training
Training details. We use the timm package for creating

all our models and pytorch lightning (pl) package for train-
ing and inference. All the training is done on 4 NVIDIA
A100 SXM4 40GB GPU’s using pl’s DistributedDataPar-
ellel (ddp) recipe. The experiments are run in parallel across
2 nodes (Intel(R) Xeon(R) Gold 6242 CPU @ 2.80GHz).

Metadata. The iNAT-2021 Birds Dataset includes meta-
information in the form of dictionary with keys: id, width,
height, file name, license, rights holder, date, latitude, lon-
gitude, location uncertainty. We extract the latitude, longi-
tude, and date values for each image. For date, we extract
the month and discard all other fields. The three values are
mapped as follows:

lon → (sin(π ∗ lon/180), cos(π ∗ lon/180)) (1)

Table 1: Pre-training hyperparameters and settings.

Config Value
optimizer AdamW
weight decay 0.01
base learning rate 1e-4
batch size 308
optimizer momentum β1=0.9, β2=0.95
learning rate scheduler cosine decay
input normalization µ = [0.485, 0.456, 0.406]

σ = [0.229, 0.224, 0.225]
masking ratio 0.75
meta dropout 0.25
augmentation ground RandomResizedCrop(384)

TrivialAugment
augmentation satellite RandomResizedCrop(224)

ColorJitter(0.5, 0.5, 0.5)
RandomHorizontalFlip(p=0.5)

lat → (sin(π ∗ lat/90), cos(π ∗ lat/90)) (2)

month → (sin(π ∗month/12), cos(π ∗month/12)) (3)

All the values are concatenated and passed to a linear layer
which embeds them to a dimension of 768. This embed-
ding is added after extracting features from the encoders.
More specifically, we add it to the [cls] token’s embedding
from the encoders. This final [cls] embedding is used in
pre-training and various downstream tasks. If meta-dropout
is turned on with probability p, we simply add zeros to the
[cls] embedding with probability p during training.

Pre-Training. We use a masking ratio of 75% for the
masked reconstruction objective. We do not use momen-
tum contrast for the contrastive learning objective as [1]
only reported a minor improvement in performance. We use
color jittering, RandomResizedCrop and RandomHorizon-
talFlip for the overhead satellite images. For the ground-
level images, we only use RandomResizedCrop and Triv-
ialAugment [2]. The specific details are presented in Ta-
ble 1.

Linear Probing. Following [3], we only use Random-
ResizedCrop during linear probing. All embeddings are
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Figure 1: Distribution of Training Samples. We show the number of observations per month (left) and number of observa-
tions per species (right). The figures indicate that the training set is fairly balanced across the species.

Figure 2: Distribution of Testing Samples. We show the number of observations per month (left) and number of observations
per species (right). The figures indicate that the distribution of species across the months is fairly balanced while there is a
slight imbalance in the number of observations per species.

Table 2: Linear probing hyperparameters and settings.

Config Value
optimizer AdamW
weight decay 1e-4
base learning rate 0.1
batch size 308
optimizer momentum β1=0.9, β2=0.999
learning rate scheduler cosine decay
input normalization µ = [0.485, 0.456, 0.406]

σ = [0.229, 0.224, 0.225]
meta dropout 0.25
augmentation ground RandomResizedCrop(384)
augmentation satellite RandomResizedCrop(224)

normalized before passing to linear layer for classification.
Other details are illustrated in Table 2. As reported by [3],
linear probing accuracy is uncorrleated from fine-tuning ac-
curacy. This explains the fact that there is a large gap in the
metrics on iNAT-2021 Birds Dataset. They also concluded
that contrastive-based models were better than MAE at lin-
ear probing. The combination of contrastive and masked
reconstruction objectives allows our model to learn robust
features for a variety of downstream tasks and beat purely
contrastively trained models.

Table 3: Downstream fine-grained classification hyperpa-
rameters and settings.

Config Value
optimizer AdamW
weight decay 0.1
base learning rate 5e-5
batch size 308
optimizer momentum β1=0.9, β2=0.999
learning rate scheduler cosine decay
input normalization µ = [0.485, 0.456, 0.406]

σ = [0.229, 0.224, 0.225]
meta dropout 0.25
augmentation ground RandomResizedCrop(384)

RandAugment(10, 12)
CutMix = 1.0
mixup = 0.8
LabelSmoothing = 0.1

augmentation satellite RandomResizedCrop(224)
ColorJitter(0.5, 0.5, 0.5)
RandomHorizontalFlip(p=0.5)

Fine-Tuning. For ViT’s, fine-tuning (in general) re-
quires severe data augmentations and higher weight decay.
As a result, we use RandomResizedCrop, RandAugment,



Table 4: Comparison of F1 Score, Precision and Recall achieved by our proposed models and SotA approaches on the
standard test set of iNAT-2021 Birds dataset. We report this for fine-tuned models.

Method Location Date Pre-training F1 Score Precision Recall

MoCo-V2-Geo ! % InfoNCE+Geo-Clf. 0.507 0.511 0.503
MAE % % Recons. Loss 0.488 0.482 0.495
MetaFormer-2 ! ! ImageNet Clf. 0.510 0.534 0.488

CVE-MAE % % InfoNCE+Recons. Loss 0.520 0.519 0.522
CVE-MAE-Meta ! ! InfoNCE+Recons. Loss 0.527 0.523 0.531
CVM-MAE % % Matching+Recons. Loss 0.545 0.552 0.539
CVM-MAE-Meta ! ! Matching+Recons. Loss 0.553 0.561 0.546

CutMix, mixup and LabelSmoothing. Other details are pre-
seneted in Table 3. We also report additional metrics of our
fine-tuned models in Table 4.

MoCo-V2-Geo. To make fair comparisons, we imple-
mented a cross-view training routine for the MoCo-V2-
Geo. Instead of utilizing temporal positives or data aug-
mentation techniques to create positive and negative pairs,
we use the corresponding satellite images. We cluster the
geographic coordinates present in the meta-information into
20 classes using the KMeans clustering algorithm (Fig-
ure ??). These labels are then used for computing the geo-
classification loss using the [cls] embeddings obtained from
the ground-level image encoder. We use a queue of size
10000 and the same data augmentations for the ground-level
and satellite images as reported in Table 1.

C. Ablation Study

We conduct ablation on the meta-dropout rate which is
a key component of our architecture. It tunes the depen-
dence of models on metadata. Rest of the components are
pre-trained SotA architectures which have been extensively
studied in previous literatures. As is seen in Table 5, models
severely overfit on metadata, when meta-dropout is turned
off. Also, the performance of the models’ decrease as meta-
dropout rate increases more than 25%.

Table 5: Impact of meta-dropout rate on the classification
performance of models on Cross-View iNAT-2021 dataset.

Model Meta-Dropout Rate
0.00 0.25 0.50 0.75 1.00

CVE-MAE-Meta 82.23 86.23 85.02 84.79 83.78
CVM-MAE-Meta 83.55 87.46 86.22 85.97 85.89

Figure 3: Geo-Clusters. Using KMeans Clustering, we
cluster the geographic coordinates into 20 classes based
on latitude and longitude values. These classes are then
used for training on the geo-classification objective for the
MoCo-V2-Geo method. Here, we show the training (top)
and testing (bottom) geo-locations of images along with
color representing their cluster label.

D. Species Distribution Mapping

Species distribution maps are constructed by first collect-
ing satellite images over a dense rectangular grid draped on



the area of interest. Then, similarity scores are computed
between a query bird image and the satellite images. More
specifically, we precompute the embeddings for all the im-
age pairs on GPU and then compute their similarity on CPU.
The grid of scores is then interpolated at a desired spatial
resolution. We use the IDW interpolation and a spatial res-
olution of 0.01o for The Netherlands. Further, we clamp
negative similarity scores to zero before visualizing. A sim-
ilar procedure can be followed if one wants to use land cover
maps, digital elevation models (DEM), and so on for creat-
ing species distribution maps. In the future, one could also
incorporate text descriptions as query for generating these
maps.

E. Reconstruction Results
The results of our reconstructions are not fully impera-

tive for species classification and mapping, since our mod-
els are trained with a contrastive objective. In the wild,
animals come in different poses and sizes, making it chal-
lenging to reconstruct them perfectly. However, our mod-
els have effectively learned the structures of different bird
species. The large scale pre-training along-with satellite
imagery and metadata such as month of year and loca-
tion helps our model learn robust fine-grained features.
The zero-shot reconstruction results on CUB-200-2011 and
NABirds (Figure 7 and Figure 8) confirm that the features
learned by our models are highly transferable.
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Figure 4: Bird Maps for Negative Queries. We select four bird species which are not typically found in The Netherlands.
We show ground-level to satellite image similarity scores for those bird species over The Netherlands. Clearly, the maps
show little to no activations.



Figure 5: Bird to Satellite Image Retrieval. We show additional examples of uni-modal bird to satellite image retrieval.
Clearly, our modal is able to associate bird species with their expected habitat and location.



Figure 6: Reconstruction Results. Using pre-trained cross-view metric MAE model, we show reconstruction results on
randomly selected images from the standard test set of Cross-View iNAT-2021 Birds Daataset. We illustrate masked (left),
predicted (middle) and ground truth (right) images. The masking ratio is fixed at 75% during the inference.



Figure 7: Zero-shot reconstruction on CUB-200-2011. Using pretrained CVE-MAE-Meta, we show zero-shot recon-
sturction results on randomly selected images from testing set of CUB-200-2011. We show masked (left), predicted (middle)
and ground truth (right) images.

Figure 8: Zero-shot reconstruction on NABirds. Results on randomly selected images from testing set of NABirds. We
illustrate masked (left), predicted (middle) and ground truth (right) images.


