
A. Supplementary Materials
We introduced our quantization method in Sections 2

and 3 of the main paper. Here, we will cover various sweeps,
sensitivity analysis, and ablations that we have performed to
more comprehensively study our quantization scheme.

A.1. Calibration Methods
Model calibration refers to the process of determining a

good step size (d) and dynamic range (q+) for the quantizer
(see eq. (1) for how we define these terms). Previous studies
have shown that not only does the calibration method im-
pact the final quantization outcome, the same method might
not be optimal across different bitwidths [9]. Additionally,
weights and activations have shown different sensitivities
to quantization and dynamic range in computation, notably
recent mixed precision work [11] seem to employ higher pre-
cision on activations. Consequently, we study how different
calibration schemes might impact quantization performance
through a coarse grid-search studying the quantization perfor-
mance on a 3-bit homogeneous EfficientNet-Lite0 followed
by quantization aware training for 50 epochs. Our results are
summarized in Table 2, which show: (i) calibration method
impact for weights vs. activations and (ii) calibration method
impact at different bit precisions. The first phase of our train-
ing implements a homogeneously quantized model, with
the dynamic range and step size being determined through
the data of the first batch. We implement the following
baselines to determine the clipping value (qmax): (i) the max-
imum value in the data, (ii) 2⇥ the mean of the data, (iii)
max(µ + 3�, |µ � 3�|) (Gaussian in table 2), and (iv) cal-
ibrating to the Xth percentile of the absolute value of the
data over a range [9]. The choice of calibration scheme re-
sults in a 2.05% improvement over alternatives. The effect
of different calibration schemes gets less pronounced at the
higher precision (4 bits vs. 3 bits — see Table 3 for 4 bits).

A.2. Comparison of Gradient Scaling Methods
In the main text we showed results for gradient scaling

when using different gradient scaling methods for weights
and activations, in Figure 7 we show the baseline results
when the scaling methods are the same for weights and acti-
vations. The mean for STE and EWGS (best method in this
experiment) also serve as orientations in Figure 4. We fur-
ther show the effect of adding noise to the gradient instead of
meaningful gradient scaling (Gaussian and uniform noise),
both methods boost the accuracy beyond STE accuracy on
average. Further, we show the computational overhead mea-
sured in wall-clock time compare to the STE method, which
does not perform any gradient modification. The methods
which employ random noise are the most computationally
expensive compared to the STE. Interestingly, PBGS only
incurs minimal overhead while the other methods show a
substantial increase in compute time. We conjecture that this

can be primarily be attributed to the trigonometric operation
in the backward pass.

We also analyzed the behaviour of several hand-picked
scaling methods on lower and higher bit widths comparable
to what we have done in Figure 4. The results can be seen in
Figure 8, showing that at 2 bits no method delivered better
than 30% accuracy. The differences between these methods
are less apparent ( 0.4%) at 4 bits.

A.3. Effect of Granularity and Gradient Scaling
We demonstrate the effectiveness of our proposed quan-

tization (see config. j in Figure 8), through ablation trials
where we remove gradient scaling, fine-grained quantization,
and their combination (base in A.3). Across different models
and target budgets, we see that our proposed fine-grained
scheme consistently occupies the Pareto, although not all
trials perform as well (A.3).

A.4. Assumption for Comparison to Other Work
To facilitate our comparisons in (Figure 1), we computed

the memory footprint for weights and activations for different
networks, assuming floating point (bfloat16) parameters for
batch norm. If the references stated that they did not quantize
the first and last layer ([3,8,13,26,28]), we assume they can
use bfloat16 datatypes without any loss of accuracy. Table 4
states our assumptions about networks sizes in terms of how
many parameters models have in total, how many of those
parameters are for matrix-vector multiplications, how many
parameters are batch norm (BN) parameters and how many
parameters belong to the first and last layers.

A.5. Latency Considerations
To highlight the possible effects on latency we simulated

latency numbers from synthesized single MAC units on a
commercially available advanced node. Realistic latency
numbers require a comprehensive co-design between the
hardware and accelerator, including parameters like technol-
ogy node, hardware, compiler configurations etc. Note that
these are weak approximations and a more comprehensive
evaluation will require full architectural simulation. Con-
sider that data movement between memory hierarchies and
computing units has a major impact on latency. Minimizing
this through quantization will impact the end-to-end latency.
For example, consider a hypothetical accelerator with a band-
width of 128 bits/cycle to transfer data between the global
buffer and local register. A convolution layer of size 3x3x128
will require 4x the number of cycles to transfer 16bits (144
cycles) vs. 4 bits (36 cycles). While some amount of this
can be hidden through communication-computation overlap,
quantization will still reduce the number of cycles for which
computing might stall while waiting for additional data. In
our simulations each MAC unit can have different bit-width
inputs. To obtain a full model latency we added up different

Table 2. Effect of different calibration methods on homogeneous bit-width training (3 bits) for a Efficient-Lite0 on the ImageNet dataset.

W/A Max 2⇥ Mean Gaussian P99.9 P99.99 P99.999 P99.9999

Max 63.85% 63.78% 63.38% 63.24% 63.59% 63.73% 63.54%
2⇥ Mean 64.57% 0.10% 63.02% 64.51% 64.55% 64.72% 64.22%
Gaussian 64.72% 64.73% 64.90% 65.07% 64.75% 64.67% 64.79%
P99.9 64.67% 64.87% 64.64% 64.71% 64.64% 64.86% 64.88%
P99.99 64.56% 64.81% 64.44% 64.27% 64.45% 64.33% 64.51%
P99.999 64.29% 64.59% 64.50% 64.38% 63.96% 64.03% 64.25%
P99.9999 64.14% 64.23% 63.78% 63.73% 63.95% 64.34% 64.26%

Table 3. Effect of different calibration methods on homogeneous bit-width training (4 bits) for a Efficient-Lite0 on the ImageNet dataset.

W/A Max 2⇥ Mean Gaussian P99.9 P99.99 P99.999 P99.9999

Max 72.08% 71.96% 71.89% 72.00% 71.87% 71.95% 72.08%
2⇥ Mean 72.25% 0.73% 72.09% 72.22% 72.15% 72.29% 72.30%
Gaussian 72.24% 72.27% 72.15% 72.26% 72.29% 72.29% 72.38%
P99.9 72.29% 72.44% 72.20% 72.31% 72.17% 72.12% 72.44%
P99.99 72.10% 72.10% 72.10% 72.32% 72.21% 72.27% 72.27%
P99.999 72.21% 72.11% 72.03% 71.95% 72.16% 72.25% 72.19%
P99.9999 72.09% 72.01% 72.10% 72.05% 71.97% 72.25% 72.02%

latencies of single MAC units per layer given our trained
bit-width. Table 5 shows the results for our frontier results
(Efficient-Lite0 and MobileNetV2). The latency results are
relative to a 16 bit model.

A.6. ADMM for Heterogenous Quantization

To apply ADMM to quantization outlined in [sj: ()], we
reformulate the problem as:

min
x1,x2

CE(x1, y)

+ �max

LX

l=1

CX

c=1

bwlc,x2
· swlc

!
� tw, 0

!2

+ �max

LX

l=1

bal,x2
· sal

!
� ta, 0

!2

s.t. x1 � x2 = 0,

(3)

where the notation is the same as in eq. (2). However, due
to ADMM’s alternating phase formulation, we now have
two sets of model weights x1 and x2. The first set of model
weights are used only for the accuracy optimization (see CE
loss) and the second part only for size penalties. Given the
constraint, we can form an augmented Lagrangian:

F (x1, x2, y) = CE(x1, y)

+ �max

LX

l=1

CX

c=1

bwlc,x2
· swlc

!
� tw, 0

!2

+ �max

LX

l=1

bal,x2
· sal

!
� ta, 0

!2

+ yT (x1 � x2) +
⇢

2
kx1 � x2k22.

(4)
To which we can apply the ADMM method consisting of

the following steps:

1. x̄1 = argminx1 F (x1, x2, y) minimize x1 while x2

and y kept constant.

2. x̄2 = argminx2 F (x̄1, x2, y) minimize x2 while y and
x̄1 kept constant.

3. ȳ = y + ⇢h(x̄1, x̄2) update multiplier.

ADMM performance is sensitive to the learning rate in
steps 1 and 2, and the hyperparameter ⇢. To overcome this,
we conducted an extensive hyperparameter search using a
BBO algorithm [16, 37]. Based on this search. ⇢ was set to
18.1179 and the learning rate was set to 8.95062e�6 for an
EfficientNet-Lite0 with a budget equivalent to a 4-bit model.

Figure 7. Comparison of gradient scaling methods on a EfficientNet-Lite0 with weights and activation both quantized to 3 bits with a
gradient scale factor of 5e-3. STE ([2]) stands for the straight-through-estimator which does not modify the gradient meanwhile Gaussian
and Uniform add random noise to the gradient in the backward pass. PBGS ([27]), EWGS ([28]) and Acos ([31]) scale the gradient based
on the distance from the quantization point. We added two additional position based scaling methods Tanh and InvTanh. We also display the
wall-clock time overhead of gradient scaling method in log percent compared to STE.

Figure 8. Comparison of selected gradient scaling methods on a homogeneously quantized 2 and 4 bit EfficientNet-Lite0 network. Accuracy
numbers drop drastically for 2 bit networks and gradient scaling methods on activations show lower performance compared to the straight-
through estimator method.

A.7. Limitations

The main limitation of our work is that to achieve a spe-
cific model size we use standard gradient descent optimiza-
tion with penalties on the loss function which does not guar-
antee that the model size constraint will be fulfilled. The
size constraints are part of the loss function and with a suf-
ficiently large penalty factor (�) the chance of fulfilling the
constraint can substantially increase but simultaneously per-
formance might be sacrificed. Furthermore, our method does
not guarantee a solution on the efficient frontier. See A.3
in the supplementary materials where we summarize the
sensitivity of different elements of our technique across mul-
tiple training runs. Typical solutions are within 1% or on

the Pareto frontier however some memory constraints prove
especially hard to quantize efficiently on some networks, e.g.
EfficientLite-0 around 5 MB yields sub-optimal solutions
at two different accuracy levels both more than 1% away
from the Pareto frontier. Due to convergence limitations, we
did not examine techniques for binarization and tereneriza-
tion which could further improve the memory and energy
footprint of these models.

Like related work, we do not quantize batch normalization
parameters which contribute significantly to the model size
post-quantization. Techniques to “fold” these parameters
into the convolution or affine layers have been proposed that
could be leveraged to minimize this [24].

Figure 9. EfficientNet-Lite0 and MobileNetV2 mixed precision results showing all obtained data points, even those which are not Pareto
optimal.

Figure 10. SqueezeNext23-W2 and ResNet18 mixed precision results showing all obtained data points, even those which are not Pareto
optimal.

A.8. Societal Impact

Our work describes a general technique to train mixed
precision neural networks and demonstrates its performance
with image classification on the ImageNet dataset. In princi-
ple, our techniques can be applied to other domains as well.
Our quantization method trades off accuracy for model size.
We have, however, not analyzed what the model forgets when
its size constraints are tightened. Other research has recently
investigated this issue for model compression [22]. A simi-
lar analysis for mixed precision quantization remains open.
We foresee the primary impact on society being a reduction
in the cost of deploying machine learning systems on edge
devices, reducing energy consumption and carbon footprint.
However, widespread deployment of ML on such devices
could see negative uses, e.g., surveillance. Additional nega-

tive impacts might arise due to the need for mixed-precision
accelerators which might increase the barrier to entry for
deploying such models.

A.9. Effect of Different Training Phases

Table 6 shows Pearson’s correlation coefficient of the
final accuracy and parameters from the BBO (note we only
included runs that actually met our size constraints). The
correlation coefficients give insights into the importance of
the training phases and settings. For example, the activation
penalty has a high correlation coefficient, hinting at its im-
portance in training. For further phase ablation studies, we
would like to note that ablating the phase itself (i.e., remov-
ing the phase itself) might not be particularly meaningful.
In our initial studies, removing phase 1 (homogeneous net-

Table 4. Numbers used to compute effective network sizes for other works.

ResNet18 MobileNetV2 SqNxt23-W2 ENet-B0 ENet-Lite0

Total Wgt. 11,689,512 3,504,872 20,670,016 5,288,548 4,652,008
MVM Wgt. 11,679,912 3,470,760 20,485,184 5,246,532 4,609,992
First Layer Wgt. 9,408 864 18,816 864 864
Last Layer Wgt. 513,000 1,281,000 256,000 1,281,000 1,281,000
BN Wgt. 9,600 34,112 184,832 42,016 42,016

Total Sum Act. 2,032,640 6,678,112 3,962,208 8,982,784 6,676,256
Last Layer Act. 512 1,280 256 1,280 1,280

Table 5. Relative simulated latency numbers based on single mixed precision MAC units.

EfficientNet-Lite0

Size (MB) 22.66 - 3.01 3.23 3.98 4.14 5.45 5.50 5.87
Accuracy (%) 75.53 - 48.37 52.87 66.46 67.66 72.56 72.75 73.21
Norm. Latency (%) 100.00 - 31.04 31.38 33.69 33.86 38.91 38.74 42.16

MobileNetV2

Size (MB) 20.25 2.89 3.21 3.48 3.51 4.82 5.05 5.62 5.76
Accuracy (%) 71.46 60.72 63.18 65.20 65.39 68.50 68.93 69.54 69.68
Norm. Latency (%) 100.00 33.45 33.06 34.66 35.74 37.38 38.15 43.94 41.63

Table 6. Correlation coefficients of BBO search space parameters
to accuracy.

Parameter Corr. Coef.

Activation Penalty -0.0756
Weight Penalty -0.0567
Penalty Ramp-up Length -0.0491
Update Frequency +0.0408

work training) resulted in near-random accuracy. Removing
phase 2 removes the bit-width learning mechanism, thereby
preventing adaptation to size targets. Removing phase 3 pre-
vents performance recovery from finetuning, which generally
yielded a 2-3% improvement in final accuracy.

	. Introduction
	. Background
	. Quantization Aware Training
	. Heterogeneous Quantization
	. Gradient Scaling for Quantization

	. Methods
	. Quantization Training Dynamics
	. Gradient Scaling

	. Experiments
	. Setting
	. Gradient Scaling
	. Model Quantization
	. Additional Consideration
	Bias Quantization
	Knowledge Distillation
	Exploring Training Schedule and Quantization Approaches

	. Conclusions
	. Supplementary Materials
	. Calibration Methods
	. Comparison of Gradient Scaling Methods
	. Effect of Granularity and Gradient Scaling
	. Assumption for Comparison to Other Work
	. Latency Considerations
	. ADMM for Heterogenous Quantization
	. Limitations
	. Societal Impact
	. Effect of Different Training Phases

