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A. Supplementary Material
In our evaluations, we consider the optical flow meth-

ods FlowNetC (FNC) [3], FlowNetCRobust (FNCR) [16],
PWCNet (PWC) [18], SpyNet1 [13], RAFT [19], GMA [6]
and FlowFormer (FF) [5].

A.1. Defense hyperparameter evaluation

For the LGS [12] and ILP [1] defenses, we identify those
hyperparameters that lead to the most effective defense
against the vanilla patch attack [14] on FlowNetC [3]. The
hyperparameters under consideration are the block size K,
block overlap O and the block filtering threshold t, which
are used in ILP and LGS. For LGS, we further consider the
smoothing parameter bLGS. For ILP, we consider the scaling
sILP, inpainting radius rTalea and the threshold tILP. Out of
those, we directly set rTalea = 5 and tILP = 0.5, which are
the values from Anand et al. [1] that also produced good
results for our experiments. For the other parameters, we
perform a parameter study that jointly evaluates the param-
eter pairs K vs. O (for LGS and ILP), t vs. bLGS (for LGS)
and t vs. sILP (for ILP).

Per parameter combination, we evaluate the robustness
of the defended FlowNetC against the vanilla attack via
EPE(f, fVan

D ) (Fig. A1 left, small values indicate good ro-
bustness) and also quantify how much the defense changes
the flow prediction for unattacked frames via EPE(f, fD)
(Fig. A1 right, small values indicate that defense does not
change the flow prediction on benign samples). Fig. A1
shows the plots for both metrics and all parameter pairs on
LGS and ILP. To select the parameters, for each parameter
pair we pick values that lead to small values in both met-
rics (dark colors in plots for EPE(f, fVan

D ) and EPE(f, fD)),
because then the defense protects against vanilla attacks
but at the same time does not change the flow prediction
on unattacked samples. Thus, we select the parameters
K = 16, O = 8, sILP = 15, bLGS = 15 and t = 0.15, which
offer the best trade-off between the two metrics. Note that
for the K vs. O plots (Fig. A1, Row 1 and 3), the dark
area with low values in the upper left corner is unfeasi-
ble, because the block overlaps O can not be larger than
the blocksize K. Overall, our optimized parameters differ
slightly from the literature values: For LGS, the original
publication [12] used K = 15, O = 5 and bLGS = 2.3 (for
classification), while the original values for ILP from [1]

1Implementation from github . com / sniklaus / pytorch -
spynet.
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Figure A1. LGS and ILP hyperparameter study based on
FlowNetC. Good parameters should balance the robustness against
the vanilla attack EPE(f, fVan

D ) (dark color = good robustness) and
small flow perturbations through the defense on unattacked frames
EPE(f, fD) (dark color = small perturbation). We select K = 16,
O = 8, t = 0.15 , bLGS = 15 and sILP = 15 as best parameters

are t = 0.25, and sILP = 10 (for optical-flow-based action
recognition).

A.2. Defense-aware attack setup and parameters

Next, we evaluate the best combination of optimiz-
ers, learning rates (LR), and box constraints to optimize
defense-aware patches. As optimizers, we consider I-
FGSM [8] and SGD, as learning rates 1, 0.1, 0.01 for I-
FGSM and 10, 100 for SGD, and as box constraints either
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Table A1. Robustness EPE(f, fVan) [15] for undefended networks
under vanilla patch attacks with different optimization parameter
combinations. Non-evaluated settings are marked by “n.e.”.
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SGD 10.00 CoV 61.86 0.73 1.34 1.10 0.27 0.29 0.42
SGD 10.00 Clip 52.41 0.97 1.17 1.01 0.28 0.31 0.45
SGD 100.00 CoV 76.28 0.62 1.28 1.26 0.29 0.34 n.e.
SGD 100.00 Clip 63.74 0.44 1.17 1.26 0.27 0.28 0.49

IFGSM 0.01 CoV 58.56 1.28 1.84 1.30 0.29 0.61 n.e.
IFGSM 0.01 Clip 32.19 1.58 1.80 1.19 0.29 0.55 0.54
IFGSM 0.10 CoV 57.55 1.47 1.84 1.33 0.34 0.46 n.e.
IFGSM 0.10 Clip 55.92 0.50 1.03 1.15 0.24 0.30 0.49
IFGSM 1.00 CoV 60.62 1.23 1.60 1.33 0.34 0.41 n.e.
IFGSM 1.00 Clip 8.22 0.45 0.88 1.11 0.26 0.32 0.44

Table A2. Robustness EPE(fLGS, f
LGS
LGS ) for LGS-defended net-

works under LGS-aware patch attacks with different optimization
parameter combinations. Non-evaluated settings are marked by
“n.e.”, while diverging optimization runs are marked as “div”.
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SGD 10.00 CoV 3.98 3.07 3.28 3.62 1.45 1.57 n.e.
SGD 10.00 Clip 3.02 2.98 3.03 3.50 1.31 1.49 1.59
SGD 100.00 CoV 3.44 3.17 3.29 3.74 1.47 div. n.e.
SGD 100.00 Clip 3.27 3.17 3.15 3.59 1.33 div. 1.56

IFGSM 0.01 CoV 22.64 2.51 3.74 3.69 1.05 1.24 n.e.
IFGSM 0.01 Clip 19.03 2.71 3.90 3.67 1.17 1.34 1.31
IFGSM 0.10 CoV 20.70 2.89 3.68 3.98 1.33 1.49 n.e.
IFGSM 0.10 Clip 8.42 2.62 3.04 3.60 1.22 1.33 1.28
IFGSM 1.00 CoV 4.61 3.10 3.28 3.62 1.42 1.53 n.e.
IFGSM 1.00 Clip 3.48 3.28 3.37 3.86 1.45 1.62 1.71

clipping or a change of variables (CoV). Due to the algorith-
mic differences between I-FGSM and SGD, the considered
learning rates have distinct magnitudes to achieve compara-
ble results. For each defense (none, LGS and ILP) we eval-
uate the pipeline robustness of the defended method under
four separately trained defense-aware patches (using four
fixed random seeds). We report the averaged robustness val-
ues for our defense-aware patches in Tab. A1 (no defense),
Tab. A2 (LGS defense) and Tab. A3 (ILP defense).

Each defense-aware patch is trained for 2500 steps. The
patches are randomly placed on the image, randomly ro-
tated in a range of [−10, 10] degrees, and randomly scaled
in a range of [0.95, 1.05]. Batch size is chosen as 1 as the
effect of batch size on the patch training is negligible. Due
to its size and the resulting computational cost to evaluate
FlowFormer [5], we only train its patches for 1000 iterations
and omit the change of variables to reduce the number of
test runs, as it performed similarly to RAFT and GMA. We
found patches to be sufficiently converged after the reduced

Table A3. Robustness EPE(fILP, f
ILP
ILP ) for ILP-defended networks

under ILP-aware patch attacks with different optimization param-
eter combinations. Non-evaluated settings are marked by “n.e.”,
while diverging optimization runs are marked as “div”.
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SGD 10.00 CoV 11.55 1.53 2.21 1.73 1.40 1.46 n.e.
SGD 10.00 Clip 4.09 2.99 2.99 2.17 1.45 1.48 1.75
SGD 100.00 CoV 3.17 2.90 3.08 2.52 1.43 div. n.e.
SGD 100.00 Clip 3.56 3.27 3.37 2.83 1.42 1.55 1.69

IFGSM 0.01 CoV 57.46 2.95 3.84 2.77 1.12 1.25 n.e.
IFGSM 0.01 Clip 42.87 2.91 3.87 2.72 1.08 1.24 1.15
IFGSM 0.10 CoV 54.74 3.30 3.87 3.15 1.36 1.46 n.e.
IFGSM 0.10 Clip 18.70 2.93 3.11 2.77 1.23 1.32 1.39
IFGSM 1.00 CoV 3.84 3.22 3.34 2.98 1.37 1.43 n.e.
IFGSM 1.00 Clip 3.58 3.28 3.42 2.78 1.48 1.54 1.82

number of iterations. Please note that across all methods,
the choice of box constraint did not significantly influence
the effectiveness of the adversarial patches. The patch op-
timization for GMA diverged with SGD and learning rate
100 for LGS- and ILP-aware patches.

Based on this extensive parameter evaluation, we select
the best optimization parameters for all combinations of op-
tical flow network and defense-aware attack in Tab. A4,
which are boldfaced in the detailed evaluations in Tab. A1,
Tab. A2 and Tab. A3. These parameters were used to pro-
duce the defense-aware patches for the experimental evalu-
ation in the Main paper.

Additionally, we show the best (out of four) defense-
aware patches for no defense, LGS-defense and ILP-
defense in Fig. A2, Fig. A3 and Fig. A4, respectively. The
best patch is selected based on the worst robustness score of
the defended method after training.

A.3. Additional flow visualizations for vanilla attack

Here, we complement the limited selection of meth-
ods whose optical flow was visualized for unattacked and
(vanilla) attacked frames in Main Fig. 4. Unattacked and
vanilla-attacked flow visualizations on all tested optical
flow methods for the previous KITTI scene are in Fig. A5
and for an additional KITTI sample in Fig. A6. For a lean
representation, only a single frame of the attacked image
pair is shown on the right.

In both figures, RAFT [19], GMA [6] and Flow-
Former [5] are able to recognize the patch as a static object
in the scene and therefore predict its output flow as zero.
The less accurate methods SpyNet [13], PWCNet [18] and
FlowNetCRobust [16] also recognize the zero flow, but their
flow predictions are overall less precise and the patch bleeds
into the surrounding area. The outlier is FlowNetC [3],
where the entire flow prediction is deteriorated by the patch.
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Optim. LR Box FlowNetC FlowNetCRobust PWCNet SpyNet RAFT GMA FlowFormer

SGD 10.00 CoV

SGD 10.00 Clip

SGD 100.00 CoV n.e.

SGD 100.00 Clip

IFGSM 0.01 CoV n.e.

IFGSM 0.01 Clip

IFGSM 0.10 CoV n.e.

IFGSM 0.10 Clip

IFGSM 1.00 CoV n.e.

IFGSM 1.00 Clip

Figure A2. Best-performing vanilla patches for different networks and optimization parameter combinations. Non-evaluated settings are
marked by “n.e.”. See Tab. A1 for the corresponding robustness values, averaged over four patches.

In both visualizations, almost all optical flow methods are
hardly affected by the patch, as they correctly recognize it
as an object and accurately predict its zero motion.

A.4. Manual patch attack: Defended quality

In the manual patch analysis in Sec. 6.4, the Main pa-
per visually argued that our high-frequent, manual patch at-
tacks qualitatively improve the optical flow predictions of
LGS- and ILP-defended methods, as a result of the sig-
nificant quality degradation of defenses on unattacked im-
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Optim. LR Box FlowNetC FlowNetCRobust PWCNet SpyNet RAFT GMA FlowFormer

SGD 10.00 CoV n.e.

SGD 10.00 Clip

SGD 100.00 CoV div. n.e.

SGD 100.00 Clip div.

IFGSM 0.01 CoV n.e.

IFGSM 0.01 Clip

IFGSM 0.10 CoV n.e.

IFGSM 0.10 Clip

IFGSM 1.00 CoV n.e.

IFGSM 1.00 Clip

Figure A3. Best-performing LGS-aware patches for different networks and optimization parameter combinations. Non-evaluated settings
are marked by “n.e.”, while diverging optimization runs are marked as “div”. See Tab. A2 for the corresponding robustness values, averaged
over four patches.

ages. Here, we provide the corresponding quality scores
over the whole set of KITTI frames. To this end, we quan-
tify the quality QA

D = EPE(f∗, fA
D ), i.e. the distance be-

tween ground truth flow f∗ and optical flow predictions fA
D

of methods that are defended with D and attacked with A.

Tab. A5 provides the quality scores for unattacked
but defended networks (block 1, corresponds to values
from Main Tab. 1), for full pipelines where the de-
fended method is attacked with the corresponding defense-
awareness (block 2) and for our manual attack on defended
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Optim. LR Box FlowNetC FlowNetCRobust PWCNet SpyNet RAFT GMA FlowFormer

SGD 10.00 CoV n.e.

SGD 10.00 Clip

SGD 100.00 CoV div. n.e.

SGD 100.00 Clip

IFGSM 0.01 CoV n.e.

IFGSM 0.01 Clip

IFGSM 0.10 CoV n.e.

IFGSM 0.10 Clip

IFGSM 1.00 CoV n.e.

IFGSM 1.00 Clip

Figure A4. Best-performing vanilla patches for different networks and optimization parameter combinations. Non-evaluated settings are
marked by “n.e.”, while diverging optimization runs are marked as “div”. See Tab. A3 for the corresponding robustness values, averaged
over four patches.

networks (block 3). Compared to the original baseline
Q = EPE(f∗, f) (block 1, marked in gray), all defenses
decrease the quality. Fig. A7 and Fig. A8 visualize the flow
output for unattacked models on KITTI samples when no
defense, LGS or ILP is applied.

Then, we begin by comparing the quality for defended

methods in the first two blocks, i.e. we exclude the man-
ual patch attack in block 3, and mark the best quality bold
in the table. Note that we exclude the gray rows, as they
contain the quality for undefended methods. For optical
flow methods that have a good undefended quality Q, i.e.
FlowNetCRobust, RAFT, GMA and FlowFormer, we find
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Table A4. Optimal parameter setups for defense-aware patch at-
tacks on all optical flow methods with defenses. LR is the learning
rate, and Box indicates whether a change of variables or clipping
is used during optimization. The settings are a summary of the
best results from Tab. A1, Tab. A2 and Tab. A3.

Attacked model Defense Attack Optimizer LR Constraint

FlowNetC
None Vanilla SGD 100.00 CoV
LGS +LGS IFGSM 0.01 CoV
ILP +ILP IFGSM 0.01 CoV

FNCR
None Vanilla IFGSM 0.01 Clip
LGS +LGS IFGSM 1.00 Clip
ILP +ILP IFGSM 0.10 CoV

SpyNet
None Vanilla IFGSM 0.10 CoV
LGS +LGS IFGSM 0.10 CoV
ILP +ILP IFGSM 0.10 CoV

PWCNet
None Vanilla IFGSM 0.01 CoV
LGS +LGS IFGSM 0.01 Clip
ILP +ILP IFGSM 0.01 Clip

RAFT
None Vanilla IFGSM 1.00 CoV
LGS +LGS SGD 100.00 CoV
ILP +ILP IFGSM 1.00 Clip

GMA
None Vanilla IFGSM 0.01 CoV
LGS +LGS IFGSM 1.00 Clip
ILP +ILP IFGSM 1.00 Clip

FlowFormer
None Vanilla IFGSM 0.01 Clip
LGS +LGS IFGSM 1.00 Clip
ILP +ILP IFGSM 1.00 Clip

FNC

f unattacked fVan
None vanilla attacked IVan

None vanilla attacked

FNCR

PWC

SpyNet

RAFT

GMA

FF

Figure A5. Unattacked optical flow estimation (left) and corre-
sponding vanilla-attacked optical flow (middle) for all tested meth-
ods on a KITTI sample (right). Complements Main Fig. 4, see
Fig. A6 for more samples.

that a defense-aware attack on a defended model actually
yields a better quality than the defended but unattacked
model: QD

D > QD. For these methods, a noisy patch was
revealed to be the most effective. Hence, it is easier for an
adaptive attack to exploit the changes introduced by the de-
fense than to influence the flow estimation.

Now we also include the manual patch attack in the de-

FNC

f unattacked fVan
None vanilla attacked IVan

None vanilla attacked

FNCR

PWC

SpyNet

RAFT

GMA

FF

Figure A6. Unattacked optical flow estimation (left) and corre-
sponding vanilla-attacked optical flow (middle) for all tested meth-
ods on a KITTI sample (right). See Fig. A5 for more samples.

fense evaluation, again underlining the highest-quality flow
per method over all three blocks in Tab. A5. Again we ex-
clude the gray rows that contain the quality for undefended
methods in order to compare the influence of the defenses.
Now, for almost all methods the best defended quality is
achieved for manual patch attacks. When we compare the
underlined numbers to the baseline quality Q, we find that
our manual patch attack almost restores the undefended and
unattacked quality for our defended methods outside the
patch area. While this underlines the finding from the Main
paper that the low quality of defended but unattacked meth-
ods is the main reason for the low quality (and robustness)
of defended methods, it also yields another point: If the de-
fenses did not deteriorate the unattacked quality, they could
be effective in terms of quality and robustness because they
restore high-quality optical flow fields in the presence of
adversarial-like patches.

A.5. Defense evaluation on additional datasets

We evaluate the defenses and their effectiveness on more
datasets besides KITTI [11], and consider Sintel [2], Driv-
ing [9], HD1K [7] and Spring [10]. Because evaluating the
defended quality requires ground truth optical flow data,
we use validation splits of the respective test sets for all
datasets. Dataset-specific patches are then trained on the
remaining training data. For Sintel, we use the validation
set from [20] which splits Sintel-test such that the flow
magnitudes of the validation set match the flow-magnitude
distribution of the full training set [17]. For HD1K and
Spring, we are unaware of flow-magnitude matching val-
idation splits in the literature, and create validation splits
with matching flow-magnitude distributions as detailed in
Tab. A6. For Driving, we use the scenes with focal length
15mm, forwards, fast speed and left camera as validation
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Table A5. Quality QA
D = EPE(f∗, fA

D ), i.e. the distance between ground truth flow and optical flow predictions that are defended with D
and attacked with A. The upper block shows the quality scores from Main Tab. 1 (for comparison), and the lower blocks contain the quality
scores for full pipelines and manual patch attacks on networks with varying defenses. Per method, we mark the best defended quality for
unattacked networks and full pipelines bold (includes the first two blocks, up to double line), and underline the best quality if the manual
patch is also included – the undefended baselines that are marked in gray are excluded from both rankings.

u Attack type Defense FNC FNCR PWC SpyNet RAFT GMA FF

No Attack
None Q 15.42 11.10 13.26 24.03 0.63 0.61 0.62
LGS QLGS 16.70 13.13 14.61 25.15 1.42 1.55 1.42
ILP QILP 16.46 12.77 14.52 24.74 1.36 1.39 1.30

Vanilla None QVan 84.48 12.64 15.27 25.11 0.80 0.91 0.78
+LGS (LGS-aware) LGS QLGS

LGS 34.41 11.68 15.43 25.28 0.94 0.90 0.83
+ILP (ILP-aware) ILP QILP

ILP 65.02 12.31 15.65 25.29 0.68 0.70 0.68

Manual
None QMan 16.21 11.38 13.87 24.79 0.71 0.70 0.70
LGS QMan

LGS 16.66 11.69 14.24 24.87 0.92 0.91 0.88
ILP QMan

ILP 16.16 11.52 13.97 24.69 0.70 0.68 0.72

No defense LGS defense ILP defense
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Figure A7. Optical flow prediction on an unattacked frame of the KITTI dataset for optical flow methods with different defenses. Defenses
from left to right: None, LGS and ILP. See Fig. A8 for more samples.

split. Note that during our evaluations, we half the im-
age resolution for HD1K and Spring, to keep the image
sizes and hence results for patches with size 100 compa-
rable across all datasets.

For the datasets HD1K, Spring, Sintel (clean and final)
and Driving (clean and final), we show the numerical re-
sults of the defended quality analysis in Tab. A7, Tab. A8,
Tab. A9 and Tab. A10, and the respective robustness anal-
yses in Tab. A11, Tab. A12, Tab. A13 and Tab. A14. For
a better overview, Fig. A9 shows the quality vs. robust-
ness plots for all tested optical flow methods on all tested
datasets, which can be compared to the results on KITTI in
Main Fig. 5.

2See Tab. A6 for details on the used validation splits

Focusing on the quality-robustness plots in Fig. A9, we
observe that defenses worsen quality and robustness for all
optical flow methods (except those of FlowNetC) on HD1K
and Spring, cf . Fig. A9a and Fig. A9d. On Sintel and Driv-
ing, the results are more differentiated: For high-quality
methods like RAFT, GMA and FlowFormer (red markers),
defending them with ILP improves the robustness for the
final versions of the datasets in Fig. A9e and Fig. A9f –
on the clean dataset versions in Fig. A9b and Fig. A9c,
however, both defenses deteriorate either quality, or robust-
ness, or both. Defending the lower-quality methods SpyNet
and PWCNet (blue markers) also deteriorates at least qual-
ity or robustness on both datasets, with the exception of
PWCNet, where defending leads to minor robustness im-
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Figure A8. Optical flow prediction on an unattacked frame of the KITTI dataset for optical flow methods with different defenses. Defenses
from left to right: None, LGS and ILP. See Fig. A7 for more samples.
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(d) Spring
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(e) Sintel-final
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Figure A9. Quality vs. robustness of flow networks on different datasets in a double logarithmic plot. An ideal method would be in the
origin. Undefended networks are circles ⃝, networks defended with LGS are triangles ▽ and networks defended with ILP are diamonds ♢.

provements on Sintel. For FlowNetC and FlowNetCRobust
(green markers), defenses do indeed improve the robust-
ness on Sintel and Driving, but here it is LGS that leads
to the best robustness scores. Overall, this clearly supports
that defenses should not be used in a “plug’n’play” man-
ner without extensive application-specific testing, as they
either do not improve the optical flow methods at all, or –
when they do improve the robustness – their effect is small

and does not apply to more than a few selected optical flow
methods. Hence, current detect-and-remove defenses can-
not be recommended for general use.

To better understand the effectiveness differences of de-
fenses on the tested datasets, we analyze the results in re-
lation to the datasets in more detail. When we consider
the datasets KITTI, HD1K and Spring and their quality-
robustness plots in Main Fig. 5, Fig. A9a and Fig. A9d, we
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Figure A10. Image statistics for optical flow datasets. The plots show the histograms over the magnitude of first and second image
derivatives for different optical flow datasets, where the LGS defense considers first (left) and ILP considers second (right) derivatives. The
histograms are normalized by the number of pixels in the respective dataset. The top row shows the pure histograms, while the bottom row
shows the log-transformed frequency for better visualization of statistics for large gradient magnitudes, which are filtered by the defenses.

find that applying defenses to optical flow methods wors-
ens quality and robustness, which leads to a slanted line
of markers per optical flow network. This indicates that
for these datasets, the defenses affect the unattacked de-
fended flow fD as described in Sec. 6.4, Main paper, be-
cause worsening this flow enters into both, the quality cal-
culation with EPE(f∗, fD) and the robustness calculation
with EPEP (fD, f

A
D ). For the datasets Sintel and Driving in

Fig. A9e, Fig. A9b, Fig. A9f and Fig. A9c, applying de-
fenses almost exclusively changes the robustness, leading
to a horizontal line of markers per optical flow network.
This indicates that the defenses work “as intended”, affect-
ing only the attacked defended flow fA

D and hence the ro-
bustness, but are on average not very effective under attack
with defense-aware patches. In summary, defenses have the
worst side effects on the image quality for natural or nat-
uralistic data: KITTI and HD1K contain camera-captured
real-world images and Spring is a recently rendered dataset
that focuses on high-detail images. Even though defenses
work partially on the synthetic datasets Sintel and Driving,
which were rendered and created before 2016, they still fail
to demonstrate consistent advantages over undefended net-
works on these datasets. These differences in the datasets

are also visible in terms of the dataset image statistics that
are considered by the LGS and ILP defenses. In Fig. A10
we show the histograms over first- and second-order image
derivatives for all datasets. There, the synthetic Sintel and
Driving datasets have a very “even” gradient magnitude de-
cay for large gradients on the log scale (both for clean and fi-
nal rendering passes), while the realistic KITTI, HD1K and
Spring datasets do not show such a clear exponential gradi-
ent decay. All in all, defenses fail most severely on safety-
critical real-world datasets, where reliable predictions are
needed most.
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Table A6. Validation split details for the evaluation datasets.
“Frames” denotes frame pairs (for the optical flow calculation)
rather than single frames, if “Half” is checked the frame size is
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Table A7. Quality QD = EPE(f∗, fD) for optical flow pipelines
with defense D on the HD1K [7] validation split2; Best quality is
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Table A11. Robustness scores for all combinations of defended methods and defense-aware attacks on optical flow methods on the
HD1K [7] validation split2. Per attack, the robustness values of the best defense are bold. Per defense, the robustness values for the attack
it is most vulnerable to are underlined. Full pipelines are highlighted in gray, and provide the corresponding robustness values to the quality
scores from Tab. A7.
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Table A13. Robustness scores for all combinations of defended methods and defense-aware attacks on optical flow methods on the Sintel [2]
final (f) and clean (c) validation splits2 [20]. Per attack, the robustness values of the best defense are bold. Per defense, the robustness
values for the attack it is most vulnerable to are underlined. Full pipelines are highlighted in gray, and provide the corresponding robustness
values to the quality scores from Tab. A9.
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Table A14. Robustness scores for all combinations of defended methods and defense-aware attacks on optical flow methods on the
Driving [9] final (f) and clean (c) validation splits2. Per attack, the robustness values of the best defense are bold. Per defense, the
robustness values for the attack it is most vulnerable to are underlined. Full pipelines are highlighted in gray, and provide the corresponding
robustness values to the quality scores from Tab. A10.
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