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Figure 1. t-SNE 2D projection of the encoder features of: top row, Cifar- " : p g
10 ID samples; second row, ID and real auxiliary OOD, DTD dataset. First , ;
column is for embeddings extracted at the first epoch (before OOD fine- o ol o 3
tuning) and second column is after the finetuning process (10th epoch). s '
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1. Introduction

These supplementary materials serve as additional em-
pirical evaluation supporting the main results in the paper.
First we report the OOD performance of our method using
a different architecture as a backbone, Section 2. We then
experiment with combining both real and fake OOD data,
Section 3. We continue our analysis of ID/OOD features
visualization, Section 4. Section 5 explores the OOD detec-
tion performance when other datasets are deployed for the
auxiliary OOD training.

2. Another Backbone

In order to have a fair comparison with previous work, in
the main paper we show results with a ResNet18 backbone.
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Figure 2. t-SNE 2D projection of the encoder features of: top row, Cifar-
10 ID samples; second row, ID and real auxiliary OOD, DTD dataset;
third row: ID and Pseudo OOD features. First column is for embeddings
extracted at the first epoch (before OOD finetuning) and second column is
after the finetuning process (10th epoch).

Here we investigate the effect of changing the backbone to
a larger network, namely ResNet50.

Similar to the main experiments in the main paper,
models are trained for 500 epochs. We notice that with
ResNet50 our method requires less number of epochs for
finetuning. For OPSupCon-R and OPSupCon-P, we fine-
tune PSupCon for 25 and 10 epochs on DTD [1] and pseudo



Dataset/Method CE PSupCon CE + Energy PSupCon + Energy OPSupCon-R OPSupCon-P
Metrics

FPR| AUROCT AUPRT | FPR| AUROCT AUPR 1 | FPR| AUROCt AUPRT | FPR| AUROCT AUPR 1 | FPR| AUROCT AUPR 1 | FPR| AUROCt AUPR 1
DTD 18.17 95.83 9879 | 1470 97.06 99.30 5.33 98.74 99.73 | 7.22 98.57  99.70 10.81  98.13  99.60 1652 96.85  99.28
SVHN 227 99.44  99.89 | 3.41 99.35  99.87 1.83 99.46  99.89 | 0.66 99.81 99.96 2.66 99.42  99.88 3.48 99.33  99.87
Places365 2480 9445 9859 | 2346 95.61 9897 17.84 9554 98.78 1896  96.01 98.99 19.17  96.17  99.09 20.14  96.06  99.06
LSUN-C 2.09 99.37 99.88 | 0.24 99.89  99.98 1.47 99.44 9989 | 1.95 99.30  99.86 0.21 99.87  99.97 0.23 99.89  99.98
LSUN-R 3.58 99.05  99.81 1.69 99.59  99.92 4.60 99.03  99.80 | 4.96 98.90  99.78 2.68 99.40  99.88 1.80 99.55 9991
iSUN 4.19 99.00 99.80 | 1.62 99.59  99.92 3.90 99.13  99.82 | 5.12 98.94  99.79 242 99.41  99.88 1.89 99.51  99.91
iNaturalist 1624 96.83  99.33 | 7.98 98.47  99.69 9.66 9773 99.49 | 7.40 98.56  99.70 7.94 98.50  99.70 8.94 9836  99.67
CIFAR-100 3777 92.03 98.03 | 40.61 93.14 9852 3130 9287  98.12 | 3492 9354 98.56 36.57 9371 98.65 39.69 9324 98.55
Mnist 26.13 9641 99.31 | 7.16 98.54  99.72 19.62  96.87  99.38 1293 97.68  99.55 5.78 98.82  99.77 597 98.77  99.76
TIN 2825 9356 9830 | 28.19 9425 98.60 2280 9464 9858 | 22.15 9485 98.70 2520 9496 98.77 2620 94.82 98.74
Average 1635 96.60 99.17 1290 97.55 99.45 11.83  97.34  99.35 11.63  97.62  99.46 11.35 97.84 99.52 1249  97.64 99.47

Table 1. OOD detection performance on Cifar-10 with ResNet-50 backbone: a) comparison of CE and PSupCon (1, 2 columns) and, b)
comparison of OOD training with our method compared to energy finetuning. Our method outperforms performance of energy finetuning

even with pseudo OOD.
Dataset/Method CE PSupCon CE + Energy PSupCon + Energy OPSupCon-R OPSupCon-P
Metrics
FPR| AUROCT AUPRT | FPR| AUROCT AUPR 1 | FPR| AUROCT AUPR{ | FPR| AUROCt AUPR 1 | FPR| AUROCT AUPR 1 | FPR| AUROCT AUPR 1

DTD 80.46 7822 9477 | 74.07 67.48 88.46 59.08 87.97 97.30 | 68.14 8536 96.77 64.1 79.33 9443 65.32  72.88  90.77
SVHN 5241 90.56 97.99 | 8539 7530 9430 | 27.71 9527 99.01 | 11.65 97.70 9948 | 63.7 87.12 9724 9215 72.65 93.76
Places365 81.49 77.14 9426 | 8633 7197 9278 77.81 79.87 95.08 | 81.15 77.89 9458 7596 7741 9430 81.04 7539 93.74
LSUN-C 53.08 90.69 98.04 | 21.22 96.03 99.14 | 41.72 93.15 98.57 | 8558 76.54 94.66 | 821 9834 99.65  4.67 99.01  99.79
LSUN-R 64.18 87.64 97.33 7037 82.85 96.12 43.11  92.16  98.27 37.73 9338  98.59 1943  96.35 99.21 21.14 9583  99.07
iSUN 68.13 8633 97.03 | 6791 8261 9593 | 4927 9047 9790 | 3840 93.06 985l 2272 95.09 9888  22.00 9495 98.80
iNaturalist 85.66  76.57 9444 | 4280 90.18 97.68 7825 8248 96.06 | 68.61 8525 96.73 3462 9230 9821 3472 91.83  98.00
CIFAR-10 72.06 82,53 9587 | 86.64 72.06 92.30 76.78 7990 95.12 | 89.16 69.95 91.83 87.34  69.53 91.22 8846 70.19 91.94
Mnist 9479  68.66 92.88 | 99.81 4498 85.08 93.76 7331 9412 | 9528 63.57 91.15 8.58 98.50  99.70 50.05 90.75 98.06
TIN 74.05 80.81 95.08 | 77.25 78.64 94.61 7095 8296 95.61 | 7548 80.26 95.04 67.50 82.05 9541 742 79.73  94.78
Average 72.63 8191 9577 | 71.18 7621 93.64 | 61.84 8575 9671 | 65.12 8229 9573 | 4521 87.60 96.82 5337 8432 9587

Table 2. OOD detection performance on Cifar-100 with ResNet-50 backbone: a) comparison of CE and PSupCon (1, 2 columns)
and, b) comparison of OOD training with our method compared to energy finetuning. Our method outperforms performance of energy

finetuning even with pseudo OOD.

OOD features respectively. We observe that the perfor-
mance improves over PSupCon from the very first epochs
of finetuning.

Tables 1 and 2 follow the same trend as the results re-
ported in the main paper for different models. This suggests
that our proposed method is robust to changes in the feature
extractor. Especially, on the more challenging CIFAR-100
[4] dataset, our method improves over Energy finetuning [0]
with a large margin, for both auxiliary (OPSupCon-R) and
pseudo (OPSupCon-P) OOD training: 7% reduction in FPR
and 16% reduction in FPR respectively.

3. Mixed OPSupCon

In the main paper, we show that in case OOD data cannot
be gathered or synthetically generated, pseudo OOD data
can be generated using a simple mixup of the ID features
of different classes. Here, we further evaluate the perfor-
mance of our method when generating OOD training data
by combining real OOD features (Textures dataset, DTD)
with pseudo OOD features. We use our complete loss to
finetune PSupCon with such data and name this model as
OPSupCon-M (as for Mixed-OOD). Table 4 reports the per-
formance of our method when leveraging different types of

OOD data. Combining real auxiliary OOD with pseudo
OOD adds a further boost and robustness to the OOD de-
tection performance.

4. Encoder Features Analysis

In the main paper, we analyze the features of ID, auxil-
iary and pseudo OOD samples with a t-SNE 2D projection.
However, we only compared ID and OOD features before
starting the finetuning process with our method. Here, we
analyze those features after finetuning with our method. We
consider a ResNet18 model trained for 100 epochs on Cifar-
10 dataset. We train our OPSupCon-R and OPSupCon-P for
10 epochs.

Figure 1 visualizes the 2D projections of ID features and
auxiliary OOD features from DTD datasets at the beginning
and at the end of the finetuning process for OPSupCon-R.
We see that features from the OOD dataset are initially
projected quite close to the ID features of Cifar-10 dataset
which makes the OOD detection difficult. After the model
is finetuned, the OOD features from DTD dataset are pro-
jected into a cluster clearly separate from the ID features.
This results in a significant improvements on the OOD de-
tection performance.



Dataset/Method OPSupCon-R OPSupCon-R OPSupCon-R OPSupCon-P OPSupCon-P OPSupCon-P
Metrics MSP Energy Maximum logit MSP Energy Maximum logit
FPR| AUROCT AUPR 1 | FPR| AUROCT AUPR 1 | FPR| AUROCT AUPR 1 | FPR| AUROCT AUPR 1 | FPR| AUROCT AUPR 1 | FPR| AUROCT AUPR 1
DTD 774 9858 9972 | 633 9884 9975 | 495  99.04 9980 | 17.60 9701 9939 | 1733 9642 99.16 1657 96.69 99.22
SVHN 240 9938 99.88 | 0.43  99.87 99.97 | 085 9975 9995 | 271 9921 99.84 | 238 9956 9991 541 9846 99.70
Places365 2119 9582 9899 | 2440 9509 9878 | 21.17 9563 9891 | 2275 9551 9894 | 2724 9496 9881 1448 9676 99.21
LSUN-C 287  99.18 99.84 | 1.65  99.58 99.92 | 133  99.60 99.92 | 4.19 9889 99.79 | 227 9947 99.89 239 9934 99.87
LSUN-R 885 9835 99.68 | 9.92 9813 99.63 | 9.52 9816 99.64 | 934 9819 99.64 | 793 9848 9970  6.62  98.57 99.72
iSUN 849 9840 99.68 | 691 9858 9972 | 771 9840 99.69 | 10.81 9801 99.61 | 7.03  98.65 9973 724 9852 99.70
iNaturalist 1545 97.36 9948 | 9.06 9838 99.68 | 9.87  98.11 99.63 | 20.34 9658 99.32 | 1091 9813 99.62 1248 9770 99.53
CIFAR-100 3388 9377 9860 | 4079 9206 98.12 | 36.04 93.15 9841 | 3608 9339 98.56 | 47.67 91.06 9797 3642 9325 985l
Mnist 1320 97.87 9958 | 0.75  99.78 9996 | 279  99.42 9989 | 1373 9774 99.56 | 0.55 9970 99.94 810 9855 99.72
TIN 2691 9417 9856 | 3029 9323 9825 | 2583 9439 98.61 | 2838 94.03 9856 | 3322 93.17 9829 2555 94.61 98.64
Average 1409 9729 9940 | 13.05 9735 99.38 | 12.01 97.56 99.44 | 1659 96.86 99.32 | 1565 9696 9930  13.52 97.24  99.38
Table 3. Ablation on different scoring functions. Maximum logit score achieves the best average results.
g | = g | =
1 () U )
z |2 | % | B & z |2 |2 |B %
a | |8 | |8 |2 |5 a |2 [§ |2 |2 |2 |5
. = > = = = > . = > = = =] >
Method Metric | A 2 [y O = E < Method Metric | & 2 A~ O = E <
FPR| 827 327 2198 4370 6.46 33.12 19.46 FPR] 2044 532 2638 47.62 534 35.60 23.45
OPSupCon PSunCon
R AUROCT | 98.48 99.26 95.37 91.20 98.58 93.40 96.04 up! AUROCT | 96.04 98.99 94.85 90.47 98.81 9292 95.34
AUPRT 99.68 99.85 98.83 97.87 99.72 98.36 99.05 AUPRT 99.09 99.80 98.75 97.27 9481 98.00 97.95
oy | N6 OE8  B 4odd OdS 30D K FRL | 827 327 2198 4370 646 3302 19.46
OPSupCon
v Aumeg || Soll SA0  CHED CDAS SRy CRIe GBS DTD AvRoCt | 98.48 99.26 9537 9120 98.58 93.40 96.04
AUPRT | 99.07 99.80 9879 97.78 99.80 98.30 98.92 AUPRT | 99.68 99.85 98.83 97.87 99.72 98.36 99.21
OPSunC: FPRL 822 251 2034 4321 495 3148 1845 PR 1981 253 2582 47.19 193 3353 21.80
u on
Npi AUROCT | 98.49 9940 95.65 91.30 98.92 93.58 96.22 TIN AUROCT | 96.66 99.43 95.11 91.14 99.55 94.03 95.98
AUPRT 99.68 99.88 98.88 97.89 99.78 98.38 99.08 AUPRT 9930 99.89 98.86 97.99 9991 98.67 99.10

Table 4. Comparison of our method’s variants on CIFAR-10
dataset. OpSupCon-M represents using both real auxiliary OOD
(DTD) data and our pseudo OOD features when generating OOD
training samples.

Figure 2 visualizes the t-SNE 2D projection of ID fea-
tures, real OOD features from DTD and the generated
pseudo OOD features both at the beginning and at the last
epoch of the training for OPSupCon-P. We can draw the
following observations on the results of fientuning with
OPSupCon-P:

* The ID features clusters are more compact with a lesser
of an overlap (middle of the plot).

e The OOD features of DTD are pushed further away
from the dense areas of ID clusters in spite of not being
trained explicitly on those features.

* The pseudo generated features get more difficult to dis-
tinguish from ID data as we proceed with the training.

Indeed the pseudo generated features act as a regulariza-
tion to the ID features pushing samples of the same class to
be closer together and further from other classes samples.
As pseudo OOD samples are generated on the fly, while
ID clusters get more compact, it gets more difficult for the
model to distinguish them from the actual ID data. This is

Table 5. OOD detection performance when different auxiliary
OOD datasets are employed for training: ID dataset is CIFAR-
10. FPR |, AUROC 1 and AUPR 7.

due to the fact that pseudo OOD features become more and
more similar to those of ID dataset as the training goes on.
Consequently, we observed that training OPSupCon-P for a
few epochs is enough to achieve a good OOD performance
while training for a large number of epochs might have a
negative effect instead.

5. Effect of the choice of Auxiliary OOD Data

In the main paper, we consider DTD (textures) dataset
for training OPSupCon-R. This section investigates the ef-
fect of selecting another OOD dataset on the performance.

Here we test OPSupCon-R with TinyImagenet (TIN) [5]
dataset which combines 200 different object categories and
is similar in nature to CIFAR datasets. Table 5 summarises
the OOD detection performance of our model trained on
different OOD datasets for CIFAR-10 as the ID task.

We observe that training with TIN dataset improves the
OOD detection performance over plain PSupCon on all
datasets. However, training with DTD results in a better
0OOD detection performance as this is a generic dataset and
does not represent specific objects. It is worth noting that
this is a beneficial property as a similar dataset to DTD can



Dataset/Method OPSupCon-R OPSupCon-p SSD Dataset/Method OPSupCon-R OPSupCon-p SSD
Metrics SupCon Metrics SupCon

FPR| AUROCT AUPR 1 | FPR| AUROCT AUPR 1 | FPR] AUROCT AUPR 1 FPR| AUROCT AUPR 1 | FPR| AUROCT AUPR 1 | FPR| AUROCT AUPR 1
DTD 4.95 99.04  99.80 16.57  96.69  99.22 10.01 9829  97.00 DTD 5122 8844 9728 5423 8477 95.89 50.19 90.79 83.24
SVHN 0.85 99.75  99.95 5.41 98.46  99.70 0.41 99.89  99.96 SVHN 4426 9239  98.39 49.49  90.89  98.04 11.77 97.87 99.17
Places365 21.17 9563 9891 1448 96.76  99.21 28.62 9446  99.77 Places365 7452 79.30 9479 7445 7971 94.95 79.30  76.64  98.86
LSUN-C 1.33 99.60  99.92 2.39 99.34  99.87 6.76 98.57 98.21 LSUN-C 20.38 9648 99.27 18.10  96.71  99.30 4234 9353  91.62
LSUN-R 9.52 98.16  99.64 6.62 98.57  99.72 68.61 9044 84.28 LSUN-R 38.54 93.01 98.49 37.85 92.78 98.43 84.85 81.57 7413
iSUN 7.71 9840  99.69 7.24 98.52  99.70 69.98 89.51 82.24 iSUN 4645 91.33  98.13 46.38 90.82  97.97 86.46 80.52 70.54
iNaturalist 9.87 98.11  99.63 1248 97.70  99.53 37.18  94.63  92.86 iNaturalist 4771  89.87 97.63 45.38 8997 97.64 73.87 8244 7891
CIFAR-100 36.04 93.15 9841 3642 9325 9851 43.03  91.60 90.70 CIFAR-10 8474 71.01 91.50 84.08 7311 92.73 8724 69.82 6621
Mnist 2.79 99.42  99.89 8.10 98.55  99.72 13.11  98.04 97.72 Mnist 3380 9438 98.83 33.78 9437 98.83 5520 89.09 87.09
TIN 25.83 9439 9861 2555 94.61 98.64 3462 92,62 9220 TIN 68.0 82.67 95.52 69.23 8212 9544 7491 80.19 77.33
Average 12.01  97.56  99.44 1352 97.24  99.38 3123 9480 9349 Average 50.97 87.89 96.98 5129 8753  96.92 63.71 84.24 8271

Table 6. SSD Comparison ResNet-18 CIFAR-10.

be easily generated synthetically .

6. Choice of the scoring function

In the main paper, we consider Maximum Logit [2] as
our scoring function. This section investigates the effect
of selecting two other commonly used scoring functions
namely Maximum Softmax Probability [3] and (Sum) En-
ergy [0] score for detecting OOD examples.

We observe that on average Maximum Logit score
achieves the best OOD detection performance for both
OPSupCon-R and OPSupCon-P models. This is due to the
fact that the maximum logit measures the distance to the
class prototypes which is the metric being optimized during
OOD training in our method.

7. Comparison with SSD [7]

We compare our method against various state-of-the-
art works in tables 3 and 4 of the main paper and show
OPSupCon-R performs the best compared to methods from
different lines of literature.

We notice that OPSupCon-R achieves an overall lower
performance on FPR and AUROC metrics for the CIFAR-
100 dataset comapred to the self-supervised method pro-
posed in [7]. This is mainly due to the performance gap on
the SVHN dataset. Our method achieves better results on
the majority of the other datasets.

In this section, we extensively compare our method
to SSD with the settings defined in section 4.1 of the
main paper. This is the optimal default setting for both
OPSupCon-P and SSD [7]. Besides, we evaluate the per-
formance on a larger number of datasets here.

As shown in tables 6 and 7, OPSupCon-P outperforms
SSD on the large majority of the datasets achieving a much
better average on all metrics. Therefore, we confirm that
the slightly better overall performance of SSD on table 4 of
the main paper is justified by the smaller number of evalu-
ated datasets and SSD’s superior performance on the SVHN
dataset.

Table 7. SSD Comparison ResNet-18 CIFAR-100.
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