
Supplementary Materials for REALM: Robust Entropy Adaptive Loss
Minimization for Improved Single-Sample Test-Time Adaptation

Skyler Seto, Barry-John Theobald, Federico Danieli, Navdeep Jaitly, Dan Busbridge
Apple

{sseto,barryjohn_theobald, f_danieli, njaitly, dbusbridge}@apple.com

A. REALM Details
In this section, we detail the derivation showing that

REALM is an SPL objective, and provide pseudocode for
our implementation of REALM in Algorithm 1.

A.1. REALM as an SPL Objective
As outlined in Sec. 4, the EATA procedure can be re-cast

as a SPL method with the explicit regularizer

g(w;�) = ��kwk1. (1)

Similarly, minimizing the loss function

⇢(x;↵,�) =
|↵� 2|

↵
·C ·

"✓
(x/�)

|↵� 2| + 1

◆↵/2

� 1

#
, (2)

used in our REALM framework can be reinterpreted as
solving a regularized optimization problem similar to

w⇤, ✓⇤ = argmin
w,✓

[w(x)L(✓;x) + g(w;�)] ,

= argmin
w,✓

1

N

NX

i=1

[w(xi)L(✓;xi) + g(w(xi);�)] ,

(3)

with a specific regularizer g(w;↵,�). In this section, we
aim to derive an explicit formula for g(w;↵,�).

For our analysis, we closely follow the derivation in [2].
The goal is to equivalently cast the robust minimization
problem REALM:

✓⇤,↵⇤,�⇤ = min
✓,↵,�

Sdiv(x)⇢ (L(✓;x);↵,�) , (4)

which we simplify as

min
✓

⇢ (L(✓);↵,�) , (5)

as a regularized minimization problem, in the form

min
✓,w2[0,1]

w
L(✓)
�

+ g(w;↵)

�
. (6)

Note that in Eq. (5) we are ignoring the term Sdiv , which is
treated as a constant; we are also not considering the opti-
mization with respect to ↵ and �, since this can be treated
separately. Moreover, with a slight abuse of notation, let us
re-define more compactly t = L(✓)/� as the argument of ⇢,
and not report the dependency on ↵ explicitly, that is

⇢(t) :=
|↵� 2|

↵

 ✓
2t

|↵� 2| + 1

◆↵
2

� 1

!
. (7)

For the equivalence between Eq. (5) and Eq. (6) to hold,
we must ensure that minimizing either term over L(✓) re-
sults in the same solution. To this end, we impose the equiv-
alence of both

⇢ (t) = min
w

[wt+ g(w)] , (8)

as well as their derivatives with respect to L(✓),

⇢0 (t)

�
=

w

�
=) ⇢0(t) = w. (9)

Differentiating Eq. (8) with respect to w and substituting
Eq. (9), at the optimal point we get

t+ g0 (⇢0(t)) = 0. (10)

Multiplying by ⇢00(t) and integrating by parts, we recover

g0 (⇢0(t)) ⇢00(t) = �t⇢00 (t)
() (g (⇢0(t)))

0
= � (t⇢0(t))

0
+ ⇢0(t)

()g (⇢0(t)) = �t⇢0(t) + ⇢(t)

()g (w) = �w (⇢0)
�1

(w) + ⇢
⇣
(⇢0)

�1
(w)
⌘
,

(11)

where again we substituted Eq. (9) to express the regular-
izing term g(w) as a function of w. Notice that indeed the
inverse of ⇢0(t) is well-defined for our choice of ⇢(t): we
have in fact, after some simplifications,

⇢0(t) =

✓
2t

|↵� 2| + 1

◆↵�2
2

=) (⇢0)
�1

(w) =
|↵� 2|

2

⇣
w

2
↵�2 � 1

⌘ (12)

1

Substituting this into Eq. (11) allows us to write g(w) more
explicitly:

g(w;↵) =
|↵� 2|

↵

⇣
w

↵
↵�2

⇣
1� ↵

2

⌘
+

↵

2
w � 1

⌘
. (13)

Now that we have a candidate form for g(w;↵,�), we
need to verify that this indeed identifies a valid regularizer.
First, w = �0(t) must be an actual minimum for Eq. (6): in
other words, we must have

@2

@w2

✓
w
L(✓)
�

+ g(w;↵)

◆
> 0 =) g00(w;↵) > 0.

(14)
This condition can be equivalently rewritten by taking the
derivative of Eq. (10) with respect to t,

(t+ g0(⇢0(t)))
0
= 0 =) g00(⇢0(t)) = � 1

⇢00(t)
, (15)

which shows that, for g(w, ;↵) to be convex, it suffices to
ask for ⇢(t) to be concave. This can be promptly verified:

⇢00(t) =
↵� 2

|↵� 2|

✓
2t

|↵� 2| + 1

◆↵
2 �2

< 0 for ↵ < 2.

(16)
Incidentally, this also implies ⇢00(t) 6= 0, which we made
use of in our derivation; moreover, in light of this, ⇢0(t) is
monotone decreasing. We also need w = ⇢0(t) to span the
whole domain of w 2 [0, 1], namely

lim
t!0

⇢0(t) = 1, and lim
t!1

⇢0(t) = 0. (17)

This too can be verified from its definition in Eq. (12), and
holds for ↵ < 2. Finally, notice that Eqs. (16) and (17)
above correspond to the conditions in [10, Definition 1], fur-
ther confirming that the REALM robust loss function falls
within the SPL framework.

A note on the adaptation of ⇢ for entropy minimization
The original definition of the robust loss function appearing
in [1] reads:

⇢0(L;↵,�) := |↵� 2|
↵

 ✓
(L/�)2

|↵� 2| + 1

◆↵/2

� 1

!
. (18)

Notice that, compared against our definition in Eq. (2), the
argument of this function (L/�) appears squared: in fact,
Eq. (18) was originally intended for a squared-error type of
loss function. Indeed, starting from the original definition
of ⇢0 and following a similar derivation as the one outlined
in Appendix A.1, one can show that the corresponding reg-
ularized minimization problem is given by

min
✓,w2[0,1]

"
1

2
w

✓
L(✓)
�

◆2

+ g(w;↵)

#
, (19)

rather than Eq. (6): that is, the objective of the regularized
problem is alsosquared. Since our target loss function is
entropy (rather than squared entropy), we adapted ⇢ accord-
ingly in Eq. (2), so to ensure consistency between the objec-
tives of the robust and regularized minimization problems.

A.2. Pseudocode for REALM
Pseudocode for REALM is given in Algorithm 1.

REALM is relatively easy to implement requiring only ad-
ditional computation of the robust loss function to scale the
entropy, and gradient updates for both ↵, and �. This is the
objective used in REALM as ut satisfies the desired proper-
ties, and results in a scaled entropy objective as desired.

A.3. Sources of Entropy Collapse
Methods such as Tent and MEMO lead to model col-

lapse resulting in all samples having the same class predic-
tion due to online entropy optimization with single sample
batch sizes. While a primary cause of this collapse is noisy
samples, which we aim to handle in this work, there may be
other causes including high learning rates [3], or mixed dis-
tribution shifts [14]. These sources of collapse are outside
the scope of our work.

Algorithm 1 REALM: Robust Entropy Adaptive Loss Minimization

1: Input: DTest, f(· ; ✓0), ↵0, �0

2: for t = 0 to T do
3: Compute predictions ŷt = f(xt; ✓)

4: Compute robust loss L⇤ = ⇢(L(ŷt))
5: Compute weight Sdiv = {cos (f(xt; ✓),mt�1) < d}
6: Scale the robust loss L⇤ SdivL⇤

7: Update ✓t+1 ✓t � ⌘r✓L⇤

8: Update ↵t+1,�t+1 ↵t,�t � ⌘r↵,�L⇤

9: end for

B. Experimental Details for REALM
In this section, we provide additional details for models,

datasets, and hyperparameters for all methods.

B.1. Additional Model Details

ResNet-26 GN - We use the ResNet-26 network from [16].
The model is trained on the CIFAR-10 train set.
ResNet-50 GN - We use the ResNet-50 GN architecture
with pretrained weights from the timm library available un-
der the name resnet50_gn. The model is trained on the
ImageNet train set.
Vit - We use the Vit base architecture with pre-
trained weights from the timm library available as
vit_base_patch16_224. The model is trained on the
ImageNet train set.
Swin - We use the Swin tiny architecture with
pretrained weights from timm available as
swin_tiny_patch4_window7_224. The model
is trained on the ImageNet train set.
ConvNext - We use the ConvNext tiny architecture
with pretrained weights from the timm library as
convnext_tiny. The model is trained on ImageNet
train set.

Both the ResNet and Vit models are evaluated for com-
parison to [14]. The Swin and ConvNext architectures are
SOTA models used to demonstrate that REALM performs
well across architectures. We use the tiny versions to main-
tain similar parameter counts to the ResNet-50. We note
that variability in performance is likely not a result of the
number of model parameters, rather architectural differ-
ences such as attention layers.

B.2. Additional Dataset Details

CIFAR-10-C - CIFAR-10-C is a collection of 15 different
corruptions types from four categories (noise, blur, weather,
and digital) applied to the CIFAR-10 test set across five dif-
ferent severity levels. We evaluate all approaches on the

highest severity. Each corruption has a total of 10,000 sam-
ples matching the CIFAR-10 test set [6].
ImageNet-C - ImageNet-C is a collection of 15 different
corruptions types from four categories (noise, blur, weather,
and digital) applied to the ImageNet validation set across
five different severity levels. We evaluate all approaches on
the highest severity. Each corruption has a total of 50,000
samples matching the original validation set [6].
ImageNet-R - ImageNet-R contains renditions of a subset
of the classes in ImageNet including paintings, sculptures,
embroidery, cartoons, origami, and toys. A total of 30,000
samples across 200 of the ImageNet classes are contained
in ImageNet-R. For TTA on ImageNet-R we subset the net-
work outputs before adapting [5].
ImageNet-A - ImageNet-A contains samples collected
from Flickr and iNaturalist according to a subset of 200
of the classes in ImageNet. All samples collected are in-
correctly classified by a ResNet model, and the probability
of the correct class is lower than 15%. A total of 7,500
adversarially filtered samples are used for adaptation. For
TTA on ImageNet-A we subset the network outputs before
adapting [8].

B.3. Additional Hyerparameter Details
We outline hyperparameters for all methods. For all

models, we adapt only the normalization layer parameters
following [17].
TENT - For CIFAR-10 we use SGD with no momentum,
and a batch size of one. We set the learning rate to 0.005.
For ImageNet, we use SGD with momentum of 0.9, a learn-
ing rate of 0.00025, and batch size of one. The learning rate
is scaled to account for small batch size as lr = (lr/32) fol-
lowing [14]. The initial learning rate for the Vit model is set
to 0.001 and is scaled similarly.
EATA - In addition to the hyperparameters used in TENT,
we set � = 0.4 ⇥ log(c) where c is the number of classes
in the dataset. For CIFAR-10, the threshold for Sdiv is set to
0.4. For ImageNet, the threshold is set to 0.05.
SAR - In addition to the hyperparameters for EATA and

TENT, we scale the learning rate as lr = (lr/16) except for
the Vit model, and we freeze the last block of the network.
For CIFAR-10, we use a much smaller threshold at � = 0.1
as the loss is much smaller than on ImageNet, and we found
that adapting on samples with L 2 [0.1, 0.4 ⇥ log(10)] re-
sulted in unstable adaptation.
SFT - We follow the same hyperparameters as those for
TENT, except we adapt only the first conv layer of the net-
work. We did not scale the learning rate as the method cre-
ates a batch of data via augmentations. We set the num-
ber of augmentations to 64 following the batch size used in
EATA [13]. For MEMO, we use an identical implementa-
tion, only we do not freeze any part of the network.
REALM - We follow the same hyperparameters as SAR for
fair comparison. We set the initial ↵ = 0.15, � = 0.1 for
CIFAR-10, and � = 0.4⇥ log(1000) for ImageNet. We did
not tune these values for fair comparison to SAR. The value
of ↵ is chosen as it is close to 0 and mimics the behavior
of the reliable sample criteria. We set the learning rate for
↵ and � to a factor of 2 of the model parameter learning
rates for CIFAR-10 and the same for ImageNet. Note that
in Appendix D we find that setting the learning rate to the
same as that for the model parameters, and dropping the
learning rate improves performance. However, extra tuning
of the hyperparameters outside using the same learning rate
as for the model parameters may give an unfair advantage
to REALM over competing methods. For fair comparison
across methods in the main text we did not tune these.

C. Additional Commentary on REALM in Sin-
gle Sample TTA

C.1. Results on Forgetting
Our primary focus in the main paper is to demonstrate

that REALM improves online adaptation performance gen-
eralizing better to the target distribution. However, an un-
wanted consequence of adaptation is forgetting the orig-
inal distribution resulting in decreased performance on
the original in-distribution data. We investigate whether
REALM results in additional forgetting over a method such
as EATA [13], which reduces forgetting explicitly via the
anti-forgetting regularizer in [9]. To investigate, we adapt
the model on the ImageNet-C gaussian noise corruption at
severity 5, then re-evaluate model performance on the origi-
nal validation set. Results are summarized in Tab. 1 indicat-
ing that adaptation with REALM results in little to no drop
in performance on the clean validation data.

We did additional experiments using the anti-forgetting
regularizer in [9]. Using the same hyperparameters as in
[13], we found that we were able to precisely maintain
performance on in-distribution data, however dropped per-
formance on the gaussian noise corruption indicating that
there is a tradeoff in choosing the correct hyperparameter

Method Gaussian Noise Clean
No Adapt 18.0 80.0
EATA 24.9 79.8
REALM 26.1 79.6

Table 1. Accuracy for ResNet-50 GN evaluated after adaptation
on Gaussian noise corruptions and clean validation set. Results
are averaged over 3 runs.

to control the regularizer. For other datasets outside the
ones reported in this paper, it is possible that adding the
additional regularizer is necessary to preserve performance
on in-distribution data, however, for our experiments, we
found that performance was already comparable on clean
data without the need for the additional regularizer.

C.2. Wall-Clock Runtime Comparison
We implement REALM, SAR, and EATA using the Py-

torch library [15], and report the wall-clock time adaptation
takes for a single sample on average1. For the ResNet-50
with group normalization layers on ImageNet, all methods
with no gradient update take between 5-10ms with standard
inference taking 5ms, REALM taking 7ms, and EATA tak-
ing 10ms. When the model backwards on the single in-
stance, REALM finishes the fastest at around 45ms, EATA
takes 60ms, and SAR takes 80ms. Further note that in
the case of batch updates, although fewer samples may be
needed for the backward pass, a standard implementation
cannot take advantage of this, and will result in similar wall-
clock time per batch as found in [13]. Thus, without spe-
cialized hardware, in practical experiments, we’ve found
REALM’s runtime to be comparable to EATA and faster
than SAR.

C.3. Additional Commentary on Training Robust-
ness

Prior studies investigate methods for improving robust-
ness to distribution shifts during training. A common prac-
tice is to train with augmentations aimed at smoothing the
training data distribution, and improving robustness to co-
variate shifts. Some examples include Augmix [7], Au-
toAugment [4], Adversarial augment [20], and Mixup [18].
This approach for attaining robustness happens at training
time, and our TTA approach is agnostic to this. Further, im-
proving robustness at training time is difficult as one needs
to carefully construct an augmentation policy which cov-
ers any expected distribution shifts. In contrast, applying
such augmentations at test-time as is done in prior works
[11, 12, 19] does not yield better performance overall, and
makes the adaptation procedure much slower.

1We use the torch profiler and time the model_inference com-
ponent according to the example in https://pytorch.org/
tutorials/recipes/recipes/profiler_recipe.html

C.4. Additional Commentary on Batch Size of One
Our focus in this work is on the setting where online TTA

is performed with a batch size of one. Recall our example
where an individual is taking picture(s) on their phone on
a rainy day. A phone app providing object recognition ca-
pabilities would be expected to immediately classify on the
new sample. We reiterate that this is an important setting, as
it may be infeasible to wait for enough samples to batch, and
one may not see enough samples to form a batch. Further, in
the batch size of one setting, batch normalization can fail to
adapt parameters and running statistics on a single sample
from the new distribution, and methods that rely on sam-
ple skipping can skip a large portion of the test samples. In
this work, we do not explore larger batch size setting as we
believe that online inference is less practical when waiting
for a batch of data, especially when data aggregation is not
feasible due to privacy or storage concerns, and optimizing
over a subset of the batch has little practical advantage in
terms of efficiency as long as the original batch fits in mem-
ory without specialized software, or hardware.

D. Ablation Studies
REALM reduces the impact of outliers during online

adaptation by applying the robust loss ⇢ to penalize the gra-
dient update of high entropy samples. While our approach is
theoretically grounded in the self-paced learning literature,
its implementation is rather straightforward. In this section,
we study the impact of several parameter choices, and im-
plementation details of our objective. In particular, we ex-
amine the impact of Sdiv, different terms in the loss function,
reduced gradient updates on all model blocks, and different
initial values for the loss. For all ablations, we report results
for the gaussian noise corruption at severity 5, however we
expect results to be consistent across all corruptions as re-
moving components, and changing the objective will harm
performance and nullify theoretical justification. In some
cases, when tuning hyperparamters unique to REALM, we
show that improved performance can be achieved. In partic-
ular, tuning the learning rate for ↵ and � and updating the
last block of the network are both shown to increase cor-
ruption robustness. In the main text, however, we do not
tune these extra hyperparameters to keep as fair compari-
son as possible between REALM and competing methods.
Nonetheless, if one is able to tune these extra parameters,
higher performance can be achieved.

D.1. On the Importance of Sdiv

Recall that for the EATA adaptation procedure there are
two weights: (1) Sent, which controls adaptation on outliers
based on their entropy, and (2) Sdiv, which controls adapta-
tion redundancy based on whether the predictions are simi-
lar. We connect Sent to optimization of the self-paced learn-

ing objective, and treat Sdiv as independent as no gradient
is applied through this weight. Results are summarized in
Tab. 3.

We find that the Sdiv term is crucial for adaptation perfor-
mance of REALM. We hypothesize this is because we are
no longer skipping samples based on reliability. As such,
we see many additional updates which have similar predic-
tions. This means Sdiv will down-weight many of the sam-
ples we may not have used to update the model prediction
EMA in other approaches.

We further show that even with the greater impact Sdiv
has on learning in REALM, we still find that REALM
updates over more samples than EATA. On ImageNet-C
with gaussian noise corruption at severity 5, we find that
REALM updates on twice as many samples as EATA in
Fig. 1. We believe this leads to REALM achieving higher
accuracy.

Figure 1. Number of updates for ResNet-50 GN evaluated on
gaussian noise corruptions illustrating that REALM updates on
twice as many samples as EATA.

D.2. Optimizing Scaled Squared Entropy
Our choice of ⇢ is modified from the general robust

loss function defined in [1]. However, that loss function
makes an implicit assumptions that the loss itself is a scaled
squared norm:

�
x
�

�2. Traditionally robust loss functions are
used in robust regression settings where the scaled squared
norm is suitable choice of loss. However, in other settings
such as here, minimizing the squared entropy is unconven-
tional and an unmotivated objective. Nonetheless, we show
in Tab. 4 that REALM still produces the same results on the
gaussian noise corruption at severity 5 as this optimization
has a similar form to that of implicit SPL.

D.3. Removing Loss Scaling
The loss function reported in [1] scales the gradient by a

function of the loss scale �. For a given update, this lack of
re-scaling entails that the the gradient will also be scaled
by �. We modified the loss function to account for this
scaled gradient and in Tab. 5 find that this term is crucial
as it increases performance on the gaussian noise corrup-
tion by 4%.

Noise Blur Weather Digital
Method Gauss. Shot Impul. Defoc. Glass Motion Zoom Snow Frost Fog Brit. Contr. Elastic Pixel JPEG Avg.
ResNet50 (GN) 18.0 19.8 17.9 19.8 11.4 21.4 24.9 40.4 47.3 33.6 69.3 36.3 18.6 28.4 52.3 30.6
+ REALM (2.5e� 4) 26.9 29.9 28.0 18.4 18.2 29.6 31.1 45.6 43.6 45.5 71.2 44.4 28.9 49.7 55.5 37.8
+ REALM (5e� 4) 26.1 28.9 27.2 18.3 17.7 29.1 30.4 45.0 43.2 44.8 71.0 43.9 27.9 49.1 55.3 37.2
+ REALM (5e� 7) 27.9 31.1 29.2 18.6 18.9 30.4 32.1 46.4 44.1 46.3 71.5 45.1 30.1 50.4 55.8 38.5

Table 2. Accuracy across all corruptions in ImageNet-C comparing REALM with different learning rates for ↵ and �. Results are averaged
over 3 runs.

(a) ↵ - lr = 5e� 4 (b) ↵ - lr = 5e� 7 (c) � - lr = 5e� 4 (d) � - lr = 5e� 7

Figure 2. ↵ and � during adaptation for the robust loss function. Figures are over a single run to illustrate parameter changes.

Method Gaussian Noise
REALM 26.1
- Sdiv 9.2

Table 3. Accuracy for ResNet-50 GN evaluated on gaussian noise
corruptions clarifying the importance of the Sdiv term. Results are
averaged over 3 runs.

Method Gaussian Noise
REALM 26.1
REALM2 26.1

Table 4. Accuracy for ResNet-50 GN evaluated on gaussian noise
corruptions comparing our modified robust loss function with the
version used for regression problems. Results are averaged over 3
runs.

Method Gaussian Noise
REALM 26.1
- Scale Factor 22.0

Table 5. Accuracy for ResNet-50 GN evaluated on Gaussian noise
corruptions comparing REALM with and without the scale factor
for scaling the gradient update. Results are averaged over 3 runs.

D.4. Frozen Top Block

In prior work, it is shown that deep layers in the net-
work are more sensitive and important to preserve for the
original model as they retain semantic information, whereas
the shallow layers of the model are important for covariate
shifts. Thus, in our main results, following SAR, we do
not update the last block of the ResNet architecture with
REALM (layer4). We, however test whether we need to
freeze blocks of the network in REALM. Tab. 6 shows it

is unnecessary, and performance increases by ⇠ 1% on the
gaussian noise corruption. Still, we believe it may be impor-
tant to limit model updates on higher severity corruptions
as this can negatively impact adaptation, and potentially in-
crease model forgetting on the in-distribution data.

Method Gaussian Noise
REALM 26.1
- Frozen Block 27.2

Table 6. Accuracy for ResNet-50 GN evaluated on Gaussian noise
corruptions comparing REALM with freezing the last block vs. all
block norm layer updates. Results are averaged over 3 runs.

D.5. Sensitivity to Learning Rate
REALM is an extension of other entropy minimization

methods that rely on sample skipping by reformulating as
a SPL objective. When recasting our objective, we have a
few additional hyperparameters, most notably the learning
rate on ↵ and � which controls how much these parameters
update. To keep comparisons between REALM and SAR
consistent, we did not tune this value in the main text and
set this value at lr↵,� = 2⇥ lr✓. Alternatively setting this di-
rectly to lr✓ yields improved performance as well. In either
case, we do not consider tuning lr↵,� in the main text as we
did not want to give REALM any unfair advantage. How-
ever, we find empirically in Tab. 2 that better performance
using a smaller lr↵,� can be achieved, however we were not
able to tune for this value without a proper validation set.

D.6. Visualizing ↵ and �

Finally, we plot ↵ and � for the robust loss during train-
ing in Fig. 2. We find that ↵ increases or stays constant

during training, while � decreases. Both trends follow from
the loss and adaptation behavior, since as we adapt during
inference, the loss on samples from the new distribution will
gradually decrease on average, meaning ↵ should increase
for reduced penalization, and � should decrease for more
gradient update.

References
[1] Jonathan T Barron. A general and adaptive robust loss func-

tion. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 4331–4339,
2019. 2, 5

[2] Michael Black and Anand Rangarajan. On the unification
line processes, outlier rejection, and robust statistics with ap-
plications in early vision. International Journal of Computer
Vision, 19:57–91, 07 1996. 1

[3] Sungha Choi, Seunghan Yang, Seokeon Choi, and Sun-
grack Yun. Improving test-time adaptation via shift-agnostic
weight regularization and nearest source prototypes. In Eu-
ropean Conference on Computer Vision, pages 440–458.
Springer, 2022. 2

[4] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-
van, and Quoc V Le. Autoaugment: Learning augmentation
strategies from data. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
113–123, 2019. 4

[5] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-
vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, et al. The many faces of robust-
ness: A critical analysis of out-of-distribution generalization.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 8340–8349, 2021. 3

[6] Dan Hendrycks and Thomas Dietterich. Benchmarking neu-
ral network robustness to common corruptions and perturba-
tions. In International Conference on Learning Representa-
tions, 2019. 3

[7] Dan Hendrycks, Norman Mu, Ekin Dogus Cubuk, Barret
Zoph, Justin Gilmer, and Balaji Lakshminarayanan. Aug-
mix: A simple data processing method to improve robustness
and uncertainty. In International Conference on Learning
Representations, 2020. 4

[8] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Stein-
hardt, and Dawn Song. Natural adversarial examples. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 15262–15271,
June 2021. 3

[9] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the national academy of sci-
ences, 114(13):3521–3526, 2017. 4

[10] M Kumar, Benjamin Packer, and Daphne Koller. Self-paced
learning for latent variable models. Advances in neural in-
formation processing systems, 23, 2010. 2

[11] Yoonho Lee, Annie S Chen, Fahim Tajwar, Ananya Ku-
mar, Huaxiu Yao, Percy Liang, and Chelsea Finn. Surgical

fine-tuning improves adaptation to distribution shifts. arXiv
preprint arXiv:2210.11466, 2022. 4

[12] Yuejiang Liu, Parth Kothari, Bastien Van Delft, Bap-
tiste Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi.
Ttt++: When does self-supervised test-time training fail or
thrive? Advances in Neural Information Processing Systems,
34:21808–21820, 2021. 4

[13] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen,
Shijian Zheng, Peilin Zhao, and Mingkui Tan. Efficient
test-time model adaptation without forgetting. In Interna-
tional conference on machine learning, pages 16888–16905.
PMLR, 2022. 4

[14] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Zhiquan Wen,
Yaofo Chen, Peilin Zhao, and Mingkui Tan. Towards stable
test-time adaptation in dynamic wild world. arXiv preprint
arXiv:2302.12400, 2023. 2, 3

[15] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 4

[16] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei
Efros, and Moritz Hardt. Test-time training with self-
supervision for generalization under distribution shifts. In
International conference on machine learning, pages 9229–
9248. PMLR, 2020. 3

[17] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. In International Conference on
Learning Representations, 2021. 3

[18] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In International Conference on Learning Representa-
tions, 2018. 4

[19] Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo:
Test time robustness via adaptation and augmentation.
Advances in Neural Information Processing Systems,
35:38629–38642, 2022. 4

[20] Xinyu Zhang, Qiang Wang, Jian Zhang, and Zhao Zhong.
Adversarial autoaugment. arXiv preprint arXiv:1912.11188,
2019. 4

