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1. Ablation Studies

In this section, we evaluate the impact of various design
choices on the performance of RIMeshGNN for 3D shape
classification. We perform several ablation studies using
the Manifold40 dataset to examine the effects of each de-
sign element. The network is trained for 500 epochs in all
experiments.

Local Pooling Layer: The use of the proposed local
pooling layer within our classification network was inves-
tigated as one of our design choices. Experiments with the
Manifold40 mesh models indicate a small improvement in
classification accuracy when the pooling layer is incorpo-
rated. It is worth noting that the effect of the local pool-
ing layer may have a greater impact on the classification
of datasets with more complex objects or when higher-
resolution meshes are used as input.

Number of GNN layers: We employ a series of GNN
layers to capture node and edge dependencies over extended
distances, enabling information propagation through mul-
tiple hops. Our experiments began with two stacked lay-
ers and increased to 10 layers. We found that the model
achieves the highest accuracy with six stacked layers while
maintaining a large receptive field, as detailed in the ex-
perimental section. Adding more layers does not enhance
accuracy, but increases network size and computation time.
Table 1 displays the performance of RIMeshGNN with dif-
ferent numbers of stacked GNN layers when trained on the
Manifold40 dataset.

Number of spherical bins in the aggregation func-
tion of the GNN: We performed multiple experiments with
RIMeshGNN with 6 stacked GNN layers to determine the
optimal number of spherical bins for aggregating node fea-
tures in our proposed GNN. The findings are presented in
Table 2. Based on the results, we selected eight spherical
bins for the design of the aggregation function.

Evaluating the Impact of Incorporating Vertices’ Co-
ordinates and Normal Vectors: In the input features of

Number of GNN layer | Accuracy
2 80.9%
4 88.1%
6 90.7%
8 86.9%
10 62.5%

Table 1. Experimental results on Manifold40 classification for
RIMeshGNN with a various number of stacked GNN layers. The
bold number indicates the best performance.

Number of spherical bins | Accuracy
2 69.1%
4 87.4%
6 88.0%
8 90.7 %
10 90.4%
12 83.4%

Table 2. Experimental results for Manifold40 classification for
RIMeshGNN with a various number of spherical bins used in the
aggregation function. The bold number indicates the best perfor-
mance.

RIMeshGNN, vertices’ coordinates and normal vectors are
the only ones that change under rotation transformation. All
other input features are rotation-invariant, and rotating the
object does not impact them. To highlight the importance of
node-level geometric features to our classification network
design, we removed the coordinates and normal information
from the input features, which are then fed into a modified
version of our GNN layers that do not utilize coordinate and
normal information. Specifically, we exclude ||z; — z||2
and n;.n; from Equation 1, remove Equations 2 to 4 and 7
to 9 in the calculation of graph attribute hg“ and use the av-
erage of invariant nodes features instead in Equation 6. We
obtained the classification accuracy of only 68.3% in this
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Figure 2. Three typical models from each of the 40 object categories in the ModelNet40 dataset [4].

experiment, which emphasizes the critical contribution of
the coordinate and normal information to the classification
task.

2. Project Repository
The code and dataset of this project can be found at the

project repository:
https://github.com/BSResearch/RIMeshGNN

3. Datasets

In order to visually represent SHRECI11 [3] and Mod-
elNet40 [4] datasets, we randomly selected three samples
from each of the 30 categories in SHREC11 and 40 cate-
gories in ModelNet40, as labelled by the respective datasets.
Figures 1 and 2 serve as visual representations, offering re-
searchers an overview of the dataset contents.

Figure 2 also draws attention to the presence of noise
and cross-labeling issues in the ModelNet40 dataset. For



instance, the second sample in the “stool” class is misla-
beled, actually belonging to the “chair” category. Addi-
tionally, there are cross-labeling issues between the cate-
gories of flowerpot/plant/vase and desk/table as also men-
tioned in [2] and [1]. These instances shed light on the in-
herent challenges and complexities of the dataset, empha-
sizing the importance of careful consideration and evalu-
ation when utilizing the ModelNet40 dataset for research
purposes. Finally, it is worth mentioning that the models
in this report have been evaluated using the original ground
truth provided by ModelNet40.
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