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Figure 1. The constructed graph G to prove our claim. The tuple
(x,y,z) on every edge denotes lower-capacity x, upper-capacity y
and the cost z for every edge. The node colored in red indicates
the dummy ground truth node. Matching a proposal with a dummy
node indicates that there is no object corresponding to it.

Supplementary Material

1. Proof that one-to-one matching problem is a
special case of min-cost-flow problem

To show that one-to-one matching is a special case of the
min-cost-flow graph problem, we construct a graph G as
discussed in Section-3.3.1, with the value of k = 1, where
k indicates the upper capacity u(gj , t) ∀j ∈ {1, 2, . . . ,m}.
Fig. 1 shows the graph G. For our proof, we first show
that the min-cost-flow algorithm on constructed graph G re-
duces to minimizing

∑
j cσ(j),j where σ : {1, 2, ...,m} →

{1, 2..., n} is an injective function.

1.1. Proof that exactly one proposal node is matched
to a ground truth node

From the graph G, we observe that the edges from
ground truth gj to the sink t, have a lower capacity
l(gj , t) = 1, and upper capacity u(gj , t) = 1 ∀j ∈

{1, 2, . . . ,m}. Therefore, in a valid flow obtained through
a minimum cost flow algorithm, we obtain the flow at the
edges (gj ,t) as follows:

f(gj , t) = 1 ∀j = {1, 2...m}. (1)

Similarly edges from the source s to the proposals qi have
lower capacity l(s, qi) = 1 and an upper capacity u(s, qi) =
1 ∀i ∈ {1, 2, . . . , n}. Therefore, flow at the edges (s, qi)
must be:

f(s, qi) = 1 ∀i = {1, 2...n}. (2)

Further, net flow at every ground truth node is:

f(gj) =
∑

{b:(gj ,b)∈E}

f(gj , b)−
∑

{b:(b,gj)∈E}

f(b, gj). (3)

Substituting for all edges in G that are incident from and on
a given ground truth gj , we have:

f(gj) = f(gj , t)−
∑
i

f(qi, gj). (4)

We know from Eq. (1) that f(gj , t) = 1. Therefore:

f(gj) = 1−
∑
i

f(qi, gj). (5)

Since net flow is zero at each node, hence, f(gj) = 0, and∑
i

f(qi, gj) = 1. (6)

The integral flow theorem (Theorem-9.10 in [1]) guaran-
tees that if ∀(a, b) ∈ E, l(a, b) ∈ Z, and u(a, b) ∈ Z, then
f(a, b) ∈ Z after minimum cost flow computation. In our
case, for all directed edges (qi, gj) in G, the lower capacity
l(qi, gj) = 0, and the upper capacity u(qi, gj) = 1. There-
fore, using integral flow theorem, we obtain that

f(qi, gj) ∈ {0, 1} ∀i ∈ {1, . . . , n},∀j ∈ {1, . . . ,m}. (7)

From Eq. (6), Eq. (7) we can infer that there exists exactly
one value of qi for any given gj such that f(qi, gj) = 1 i.e.,
exactly one proposal node is matched to each ground truth
node.
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1.2. Uniqueness of proposal per ground truth

In this section, we show that there exists a unique
proposal per ground truth. Let σ be the relation from
{1, 2, . . . ,m} → {1, 2, . . . , n} where m is the number of
ground truths and n is the number of proposals defined as:

σ = {(j, i) : f(qi, gj) = 1}. (8)

We show that σ is an injective function.
From the previous section, we obtain that there exists a

single proposal per ground truth i.e., for any given gj there
exists qi such that f(qi, gj) = 1. Therefore σ is a func-
tion from {1, 2, . . . ,m} to {1, 2, . . . , n}. To show that σ is
injective, for any two given ground truth indices j1, j2 we
need to show that if σ(j1) = σ(j2), then j1 = j2. We prove
this by contradiction.

Let us assume two distinct ground truth indices j1, j2
such that σ(j1) = σ(j2) = i where i represents the index
of a proposal. The net flow at qi is:

f(qi) =
∑

{b:(qi,b)∈E}

f(qi, b)−
∑

{b:(b,qi)∈E}

f(b, qi). (9)

Substituting for all edges in G that are incident from and on
a given proposal qi, we have:

f(qi) =
∑
j

f(qi, gj)− f(s, qi). (10)

We know from Eq. (2) that f(s, qi) = 1 and therefore we
have

f(qi) =
∑
j

f(qi, gj)− 1. (11)

Since, net flow is zero at each node, hence f(qi) = 0, and:∑
j

f(qi, gj) = 1. (12)

On expanding Eq. (12), we obtain:

f(qi, gj1) + f(qi, gj2) +
∑

j ̸=j1,j2

f(qi, gj) = 1. (13)

Since σ(j1) = σ(j2) = i, we have:

f(qi, gj1) = f(qi, gj2) = 1. (14)

Therefore, we obtain that:

1 + 1 +
∑

j ̸=j1,j2

f(qi, gj) = 1 (15)

∑
j ̸=j1,j2

f(qi, gj) = −1 (16)

We know from Eq. (7), that f(qi, gj) takes values from
{0, 1}. Therefore

∑
j ̸=j1,j2

f(qi, gj) ≥ 0 for any given

proposal qi, which is in contradiction to Eq. (16). This im-
plies that there cannot exist two distinct ground truth indices
j1, j2 such that σ(j1) = σ(j2) = i. This also concludes that
j1 must be equal to j2, and hence σ must be an injective
function, and that there exists a unique proposal for every
ground truth.

1.3. Matching Cost Optimization

The net flow at source node s can be written as:

f(s) =
∑

{b:(s,b)∈E}

f(s, b)−
∑

{b:(b,s)∈E}

f(b, s) (17)

Substituting for all edges in G that are incident from and on
s, we have:

f(s) =
∑
i

f(s, qi)− f(t, s) (18)

We know from Eq. (2) that f(s, qi) = 1. Therefore:

f(s) =
∑
i

1− f(t, s) = n− f(t, s) (19)

Since net flow at each node is zero. Therefore, f(s) = 0,
and:

f(t, s) = n (20)

Similarly, for the sink node t, the net flow is:

f(t) =
∑

{b:(t,b)∈E}

f(t, b)−
∑

{b:(b,t)∈E}

f(b, t). (21)

Substituting for all edges in G that are incident from and on
t, we have:

f(t) = f(t, s)−

∑
j

f(gj , t) + f(d, t)

 . (22)

Here d denotes the dummy ground truth node. We know
from Eq. (20) that f(t, s) = n. Therefore:

f(t) = n−
∑
j

f(gj , t)− f(d, t). (23)

We know from Eq. (1) that f(gj , t) = 1. Therefore,

f(t) = n−
∑
j

1− f(d, t) (24)

Since the number of ground truths is m, we obtain

f(t) = n−m− f(d, t) (25)

Since net flow is zero at each node, f(t) = 0, and:

f(d, t) = n−m (26)



Net flow at dummy ground truth d can be written as:

f(d) =
∑

{b:(d,b)∈E}

f(d, b)−
∑

{b:(b,d)∈E}

f(b, d) (27)

Substituting for all edges in G that are incident from and on
d:

f(d) = f(d, t)−
∑
i

f(qi, d) (28)

We know from Eq. (26) that f(d, t) = n−m. Therefore:

f(d) = (n−m)−
∑
i

f(qi, d) (29)

Since net flow is zero at each node, f(d) = 0, and:∑
i

f(qi, d) = n−m. (30)

Total flow cost for the graph G can be computed as:

C =
∑

(a,b)∈E

c(a, b).f(a, b) (31)

Substituting for all edges in G, we obtain:

C =
∑
i

∑
j

c(qi, gj)f(qi, gj) +
∑
i

c(s, qi)f(s, qi)

+
∑
i

c(qi, d)f(qi, d) +
∑
j

c(gj , t)f(gj , t)

+ c(d, t)f(d, t) + c(t, s)f(t, s) (32)

Since the cost of all incoming and outgoing edges from the
source s and sink t is zero, we can rewrite the equation as:

C =
∑
i

∑
j

c(qi, gj)f(qi, gj) +
∑
i

c(qi, d)f(qi, d) (33)

Since the cost of all edges from proposals qi to dummy
ground truth d have the same cost cd, we can rewrite the
equation as:

C =
∑
i

∑
j

c(qi, gj)f(qi, gj) +
∑
i

cd.f(qi, d) (34)

By construction, we have c(qi, gj) = ci,j . Therefore:

C =
∑
i

∑
j

ci,jf(qi, gj) + cd
∑
i

f(qi, d) (35)

We know from Eq. (30) that
∑

i f(qi, d) = n −m. There-
fore:

C =
∑
i

∑
j

ci,jf(qi, gj) + cd(n−m) (36)

=
∑

i=σ(j)

∑
j

ci,jf(qi, gj) +
∑

i ̸=σ(j)

∑
j

ci,jf(qi, gj)

+ cd(n−m) (37)

From the definition of σ in Eq. (8), we know that
f(qi, gj) = 1 if and only if σ(j) = i and f(qi, gj) = 0
in all other cases. Therefore we obtain the total flow cost in
the graph G as:

C =
∑
j

cσ(j),j + cd(n−m). (38)

Hence when we minimize C, we obtain

minC = min

∑
j

cσ(j),j + cd(n−m)


= min

∑
j

cσ(j),j

+ cd(n−m) (39)

Since cd, n,m are all constants, in order to minimize C,
it is sufficient to minimize

∑
j cσ(j),j . Hence our min-

cost-flow formulation computes an injective function σ :
{1, 2, ...,m} → {1, 2..., n}, which minimizes

∑
j cσ(j),j .

Thus, we prove that the one-to-one matching problem is a
special case of a min-cost-flow problem.

2. Ablation study to understand the impact of
proposed loss

To determine the effect of the proposed classification
loss on our model, we conduct the following experiment
in which 100 random images from the ECP [2] valida-
tion dataset are processed with DINO [6] and our proposed
model. Then, we plot the graph of Confidence versus IoU
for both. Confidence represents the prediction confidence
for a specific object, and IoU represents the intersection
over the union of the prediction and the actual ground truth.
Fig. 2 depicts a graphical comparison of the two models’
outputs. Fig. 2b reveals that with the introduction of pro-
posed loss, the number of points in the upper right quad-
rant of the graph increases by 21% in comparison to that of
Fig. 2a, indicating that with the introduction of this loss, the
number of predictions with a high classification score and a
high IoU with the ground truth has increased.

3. Ablation study to determine cost of match-
ing with the dummy ground truth

To better understand the cost of matching with the
dummy ground truth cd, we performed the following exper-
iment where we simulated the many-to-one matching by re-
peating the ground truth and then applied Hungarian match-
ing at the RPN layer similar to [3]. For one of the interme-
diate training epochs, we plotted a histogram of the cost
values for those matches with an IoU of less than 0.3 with
the ground truth. Fig. 3 depicts the resulting histogram. We
observe that the mean of this histogram is 2.9.



(a) DINO (b) Ours

Figure 2. The plot visualizes the confidence and IoU’s distribution
of matched samples in DINO and Ours. It can be observed that the
proposed model has more predictions in the top right quadrant.

Figure 3. The plot shows the histogram of matching costs for those
matches whose IoU between the proposal and the ground truth is
less than 0.3

From our proposed flow-based matching strategy, a
dummy ground truth vertex was introduced with an edge
from all the proposals with an edge cost of cd. We obtained
our best results when cd=4.5. Consequently, with cd=4.5,
we can infer from the histogram that it eliminates approx-
imately 20% of those matches whose IoU with the ground
truth is less than 0.3, previously produced by the many-to-
one matching by repeating ground truth.

4. Comparision of the performance on COCO
dataset

To demonstrate our model’s performance on general ob-
ject detection tasks, we trained it on the MS COCO Dataset
[4]. Our model was trained from scratch using DINO’s four-
scale configuration over 12 epochs. We achieved a mAP of
57.4, which is an improvement of 0.6 mAP compared to
DINO’s vanilla version which scored an mAP of 56.8 in the
same setting.
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