
Supplementary for Benchmarking Out-of-Distribution Detection in Visual
Question Answering

1. In/Out-of-Distribution Samples of VQA
Data

To further explore the attributes of different VQA
datasets used in our VQA OOD benchmark, we started a
game to guess the dataset from which a randomly collected
VQA sample came. Through this game, we aimed to show-
case the different distributions of data sampled from differ-
ent datasets in an intuitive and clear way.

In Figure 1, we have listed a batch of randomly selected
VQA samples from VQAv2 [5], GQA [9], CLEVR [11],
VizWiz [6], VQA Abstract Scene [2], and QRPE [15].
We have concealed the dataset name of each sample and
will release them at the left-bottom of this page 1. As dis-
cussed, some datasets may have strong biases in either vi-
sual or linguistic modalities, or both, such as CLEVR and
VQA Abstract Scene, making them more distinguishable.

On the other hand, some of them may share some vi-
sual or linguistic similarity (GQA, VizWiz, and QRPE) with
in-distribution data (VQAv2), making it difficult to deter-
mine their origin with the information from a single modal-
ity. The data from QRPE is more challenging since it has
the same visual and linguistic distribution with VQAv2 but
novel combinations.

2. Training Configuration of VQA Methods

Implementation Details of BUTD. We adapt our
BUTD [1] implementation from [18]. A question is en-
coded via an LSTM [8] with GloVe word embeddings [16]
into a 1024-dimension representation. N object features are
extracted with VinVL-based [21] object detection model. A
softmax score, A0 ∈ RN×1, is computed from the con-
catenation of visual and question features for each object.
A multimodal representation is computed as the element-
wised multiplication of the question-attended image and
question representation and then projected to the answer

1Answer for the guessing game: VQA: A2, D1, G1, G4, B1, A4, H3,
J1, K0, J2, I4; VizWiz: C4, D2, B0, E2, E0, N4, K1, K4, H2, N2, H1;
VQA Abstract Scene: D4, B4, F0, G3, C1, F1, E4, M2, L0, I2, N0, N1;
GQA: B2, F4, C0, E3, A3, G0, L2, L4, M1, L3, J0, L1; CLEVR: D3, C3,
B3, D0, G2, F2, E1, I0, J4, M4, I3, M3, J3, H0; QRPE: A1, F3, C2, A0,
H4, K3, M0, I1, K2, N3

domain. The model is trained with Adamax [12] for 13
epochs. The learning rate is 1e− 4

Implementation Details of MCAN. We adapt the
MCAN [19] model from the same repository. Questions
and images are pre-processed as in BUTD to word tokens
and object features. The model is based on the Encoder-
Decoder structure introduced in [19] where the encoder and
decoder consist of 6 and 12 transformer [10] layers, respec-
tively. Each attention layer has 8 heads, and the dimension
of hidden states is 1024. The model is trained for 13 epochs
with Adam [12] at an initial learning rate of 7e− 5.

Implementation Detail of X-VLM and X-VLM∗. The X-
VLM-based VQA model [20] consists of a pretrained X-
VLM encoder and a randomly-initialized transformer-based
answer decoder. The image module of X-VLM encoder is
initialized with a Swin transformer with a window size of
7 trained on ImageNet-22K [3]. The question and cross-
modality encoders are initialized with the first and the last 6
transformer layers of the base Bert model released by [4]. In
Table 2 of the main paper, X-VLM is the pretrained model
released by [20] and X-VLM∗ is the model trained from
scratch only on VQAv2 with the same initialization. We
finetune the model with AdamW [14] and a learning rate of
5e − 5 for 10 epochs. More details can be found in [20].
Note that in this paper, we only consider the attention maps
and hidden states in the X-VLM encoders to compute OOD
scores, e.g. MAP and Maha.

For all the VQA-based models, a total of 3129 answers
are considered during the training and MSP computation.

Implementation Details of LangM, LangVAE, and I2Q.
LangM, LangVAE, and I2Q models decode questions by
predicting the probabilities of word tokens conditioned on
different inputs. We build up these three models based on
the proposed Encoder-Decoder transformer structure [17].
For LangVAE, inspired by [10], questions are tokenized
by the tokenizer of Bert, and then sent to a transformer-
based predictor to predict mean and variance vectors for
each word token. Token-wised question features are sam-
pled from a Gaussian function with predicted mean and
variance vectors. A transformer-based question decoder
takes the token-wised question features to reconstruct ques-
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Figure 1. Randomly sampled image-question pairs from the six datasets used in our benchmark – VQA, VizWiz, GQA, CLEVR, VQAABS,
and QRPE. We encourage readers to try to identify where each sample came from and provide the answer key at the left-bottom of the first
page. In our experience with this challenge, visual and linguistic clues are generally sufficient to separate the datasets.



# Method (Score) Q I VIZWIZ GQA CLEVR VQAABS IIn/QOut IOut/QIn QRPE Average
D

en
si

ty
-b

as
ed 1 LangM X 0.768 0.869 0.983 0.606 0.913 0.500 0.439 0.725

2 I2Q X X 0.729 0.884 0.983 0.755 0.956 0.792 0.620 0.817

R
ec

on
st

.
-b

as
ed 3 RIAD X 0.246 0.546 0.016 0.584 0.500 0.145 0.492 0.361

4 LangVAE X 0.554 0.522 0.835 0.512 0.666 0.500 0.512 0.586

Pr
ed

ic
tio

n
-b

as
ed

5 BUTD (MSP) X X 0.775 0.512 0.700 0.608 0.580 0.529 0.698 0.629
6 MCAN (MSP) X X 0.794 0.506 0.667 0.591 0.573 0.518 0.739 0.627
7 X-VLM (MSP) X X 0.714 0.583 0.670 0.656 0.605 0.549 0.726 0.644

Fe
at

ur
e

-b
as

ed

8 BUTD/MCAN (Maha-V) X 0.974 0.416 0.996 0.946 0.500 0.725 0.566 0.732
9 X-VLM (Maha-V) X 0.967 0.442 0.988 0.999 0.500 0.732 0.592 0.746

10 BUTD (Maha-L) X 0.653 0.641 0.784 0.464 0.710 0.500 0.496 0.607
11 MCAN (Maha-L) X 0.628 0.660 0.729 0.506 0.690 0.500 0.540 0.602
12 X-VLM (Maha-L) X 0.593 0.686 0.940 0.530 0.875 0.500 0.432 0.651
13 BUTD (Maha-X) X X 0.824 0.394 0.412 0.365 0.638 0.468 0.700 0.543
14 MCAN (Maha-X) X X 0.754 0.602 0.743 0.660 0.539 0.643 0.685 0.661
15 X-VLM (Maha-X) X X 0.852 0.534 0.784 0.705 0.685 0.640 0.619 0.688
16 Swin (Maha-V) X 0.933 0.488 0.997 0.983 0.500 0.756 0.561 0.745
17 BERT (Maha-L) X 0.645 0.836 0.942 0.496 0.872 0.500 0.390 0.669

18 Swin (MAP-V) X 0.323 0.623 0.178 0.452 0.500 0.396 0.493 0.424
19 BERT (MAP-L) X 0.449 0.782 0.977 0.519 0.848 0.500 0.550 0.661
20 X-VLM (MAP-V) X 0.849 0.332 0.985 0.495 0.500 0.671 0.542 0.625
21 MCAN (MAP-L) X 0.809 0.497 0.544 0.475 0.541 0.500 0.415 0.552
22 X-VLM (MAP-L) X 0.960 0.916 0.999 0.570 0.999 0.500 0.605 0.793
23 BUTD (MAP-X) X X 0.465 0.542 0.681 0.600 0.521 0.583 0.518 0.559
24 MCAN (MAP-X) X X 0.884 0.431 0.791 0.554 0.567 0.706 0.641 0.666
25 X-VLM (MAP-X) X X 0.930 0.578 0.857 0.528 0.922 0.816 0.680 0.759
26 MCAN (MAP-A) X X 0.861 0.479 0.614 0.495 0.580 0.560 0.463 0.579
27 X-VLM (MAP-A) X X 0.953 0.880 1.000 0.562 0.998 0.630 0.652 0.811
28 X-VLM∗ (MAP-A) X X 0.962 0.872 0.996 0.560 0.990 0.548 0.681 0.801

Table 1. AUCROC results of OOD detection on different OOD sets. BUTD/MCAN represents the object features share by BUTD and MCAN
models. Single-modality results are grayed for off-modality OOD settings.

tions. For I2Q, grid embeddings of the image extracted by
a pretrained ResNet101 [7] are encoded by a transformer
encoder. Then the question decoder takes the encoded im-
age features to decode the corresponding questions. Dif-
ferently, in LangM, no prior information is provided. Thus
the transformer encoder is not needed, and the question de-
coder takes zero vectors directly to decode the questions.
Each transformer layer in the encoders and decoders has 8
heads and a dimension of 512. In this paper, we stack 4
layers for both the encoder and decoder. The models are
trained with Adam [12] for 30 epochs with the learning rate
of 5e − 4. LangM and I2Q are supervisedly trained with
a Cross-Entropy loss, while LangVAE is optimized with

ELBO-based VAE objective [13].

3. Computation of Feature-Based OOD Scores
In this paper, we compute the feature-based OOD scores

based on the features captured from single and cross-modal
modules. The single-modal modules, e.g. image and
language-modal encoders, are defined as the modules that
process the features from only one modality. The module
will be treated as cross-modal only if it takes inputs from
more than one modality.
Computation of BUTD-based Maha and MAP scores.
Following the definition of MAP, a BUTD-based MAP
score is represented as the maximum values of the single



Figure 2. Histograms of four multimodal model-score combinations in VQAABS, GQA, and QRPE datasets.

softmax attention map A0. Since the object features are
not further processed by an image encoder before the cross
attention, we average object features as the image repre-
sentation for Maha-V for BUTD. Maha-X and Maha-L are
computed with the multimodal and question representation.

Computation of MCAN-based Maha and MAP scores
Considering that there is not a module to encode the object
features alone in MCAN, like BUTD, we also take the aver-
age of the object features as the image representation. For
question and cross-modal representations, we take the av-
erage of the hidden states outputted from the last layer of
the text encoder and decoder respectively. In our MCAN
model, there are 6 encoder and decoder blocks. Each en-
coder block contains 1 self-attention transformer layer, re-
sulting in 48 attention maps for the question encoder. For
the cross-modal decoder, each decoder block contains 1
cross-attention attention layer, providing also 48 attention
maps. The MAP score for each modality is computed as the
average of the maximum value of each softmax attention
map.

Computation of X-VLM-based Maha and MAP scores.
The question and cross-modality encoder contains 6 trans-
former layers with 12 heads in each, resulting in 72 atten-
tion maps for each modality. The image encoder contains
4 Swin Transformer Blocks. The number of heads of the
transformer layers are 4, 8, 16, and, 32 separately in cor-
responding blocks. Due to Shifted Window mechanism,
a total of 1984 attention maps are computed for a single
image. We average the maximum softmax values of the
maps as the MAP score of each modality. The MAP-A is
computed as the mean of the MAP-V, MAP-L, and MAP-
V. Similar to MCAN-based Maha, we capture the hidden
states of the last transformer layers of each modality and
perform a meanpool operation to compute representations
for the score computation.

4. More Experiments on VQA OOD Methods

An unabridged accounting of our experimental results is
shown in Table 1. This extends the results shown in the

main paper by including Maha and MAP results for BUTD
and MCAN. Interestingly, similar to Swin transformer, the
Maha-V of object features of BUTD and MCAN (row 8)
performs well in the image modality, gaining the best per-
formance in VizWiz. Compared to the variant of MAP-L,
we find MCAN-based MAP-L has nearly random perfor-
mance, especially in the GQA, CLEVR and IIn/QOut (21),
where X-VLM-based and Bert-based MAP-L still works
well, suggesting that initializing with large-scale pretrained
language model, e.g. Bert, can benefit the MAP-based OOD
detection in Language modality. Checking the Maha and
MAP score of cross-modality (row 13-15 vs 23-25), we
can find the MAP-X works better on the Average score than
Maha-X with BUTD and X-VLM and achieve similar per-
formance with MCAN, suggesting that the compared with
the feature distance, the cross-modal matching could be a
more reliable way to figure out the anomaly sources, espe-
cially in the case having both distinct image and questions,
e.g. CLEVR.

Figure 2 shows histograms for selected multimodal scor-
ing methods. From the figure, we can see that more than
40% of the MSP score of ID data points are concentrated
at the high-score area ( fMSP > 98%) and the scores of
OOD data points also have the same trend. Comparing
the histograms of Maha-X scores based on X-VLM, we
can see that the method has less overlapping between the
histograms of VQA and ABS, suggesting the features of
cross-attention layers maintains more image information
and have less ability to tell if there is a novel relationship of
the image-question pair. However, checking the histograms
of X-VLM (MAP-A) and I2Q (GMP), we can see that the
question information is more influential in these 2 methods,
resulting a more distinguishable ID and OOD scores.
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Figure 3. More visualization samples of VQA OOD detection with X-VLM MSP scores.



Figure 4. More visualization samples of VQA OOD detection with X-VLM MAP-A scores.



Figure 5. More visualization samples of VQA OOD detection with X-VLM Maha-X scores.



Figure 6. More visualization samples of VQA OOD detection with I2Q GMP scores.
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