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1. Observation Velocity Score Approximation

Let ug = (x0,vo)', u; = (x¢,v¢)", they are linked
by the probabilistic transition kernel of linear SDEs [2]. In
terms of CLD as follows
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Then we can determine the probability of observing y
given u, by the following proposition.

Proposition 1.1. (Determine the probability of observing
y given u) For simplicity of notation, By ~p(ug|u,) IS de-
noted as E. Under the condition of u, at time t, the proba-
bility of observing y can be derived from
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Proof. Assuming ug is fixed, known from the image
restoration problem formulation, h(s) = p(y|sug + (1 —
s)Ug) is a quadratically differentiable function of s. So
from the second-order Taylor formula, expand h(s) at 0,
we have

h(1) = h(0) + K (0) +/0 B'(s)(1— s)ds,  (7)

which is
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Taking expectations for ug on both sides, we have
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The calculation of 2 MS";;(PS)“O) is very critical.

Assuming H is linear, it is not hard to obtain
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Thus conclusion of Eq. (5) is proved.
O

2. Posterior Estimation of Ground Truth

Proposition 2.1. (Estimate the mean of the initial image
and velocity from the current moment) Under the condition
of u, at time t, the posterior mean value of the image at time
0 can be derived from
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where A=d+1,d+2,---
half of this vector.

2d indicates to take the second

Proof. First from the transition densities Eq. (2) we have
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To  simplify notation let  po(uy) =
W exp [ ut 2 Ut:l T(ut) = DTE Uy,
and w(ug) = 1uf D] ;" D;uy, then we have
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Integrate over initial data and velocity pair distribution we
obtain

p(us|ug) = po(uy) exp [ug 7'(uy)
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In order to get the score, then take the derivative of v; on
both sides of the previous formula
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Divide both sides by p(u;), that is to say
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Transforming the formula and simplifying the notation, we
get
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The conclusion of Eq. (24) is proved.
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