

Conditional Velocity Score Estimation for Image Restoration

Supplementary Material

Ziqiang Shi, Ruijie Liu

Fujitsu R&D Center

Beijing, China

shiziqiang@fujitsu.com

1. Observation Velocity Score Approximation

Let $\mathbf{u}_0 = (\mathbf{x}_0, \mathbf{v}_0)^\top$, $\mathbf{u}_t = (\mathbf{x}_t, \mathbf{v}_t)^\top$, they are linked by the probabilistic transition kernel of linear SDEs [2]. In terms of CLD as follows

$$\begin{cases} d\mathbf{x}_t = M^{-1}\beta\mathbf{v}_t dt, \\ d\mathbf{v}_t = -\beta\mathbf{x}_t dt + \Gamma\beta M^{-1}\mathbf{v}_t dt + \sqrt{2\Gamma\beta}d\mathbf{w}_t. \end{cases} \quad (1)$$

we have the exact relation [1]

$$p(\mathbf{u}_t|\mathbf{u}_0) = \mathcal{N}(\mathbf{u}_t; \boldsymbol{\mu}_t, \boldsymbol{\Sigma}_t), \quad (2)$$

where

$$\begin{aligned} \boldsymbol{\mu}_t &= \begin{pmatrix} 2\beta t\Gamma^{-1}\mathbf{x}_0 + 4\beta t\Gamma^{-2}\mathbf{v}_0 + \mathbf{x}_0 \\ -\beta t\mathbf{x}_0 - 2\beta t\Gamma^{-1}\mathbf{v}_0 + \mathbf{v}_0 \end{pmatrix} e^{-2\beta t\Gamma^{-1}} \\ &= e^{-2\beta t\Gamma^{-1}} \begin{pmatrix} 2\beta t\Gamma^{-1} + 1 & 4\beta t\Gamma^{-2} \\ -\beta t & -2\beta t\Gamma^{-1} + 1 \end{pmatrix} \begin{pmatrix} \mathbf{x}_0 \\ \mathbf{v}_0 \end{pmatrix} \\ &= \mathbf{D}_t \begin{pmatrix} \mathbf{x}_0 \\ \mathbf{v}_0 \end{pmatrix}, \end{aligned} \quad (3)$$

and

$$\begin{aligned} \boldsymbol{\Sigma}_t &= \boldsymbol{\Sigma}_t \otimes \mathbf{I}_d, \\ \boldsymbol{\Sigma}_t &= \begin{pmatrix} \Sigma_t^{xx} & \Sigma_t^{xv} \\ \Sigma_t^{xv} & \Sigma_t^{vv} \end{pmatrix} e^{-4\beta t\Gamma^{-1}}, \\ \Sigma_t^{xx} &= \Sigma_0^{xx} + e^{4\beta t\Gamma^{-1}} - 1 + 4\beta t\Gamma^{-1}(\Sigma_0^{xx} - 1) \\ &\quad + 4\beta^2 t^2 \Gamma^{-2}(\Sigma_0^{xx} - 2) + 16\beta^2 t^2 \Gamma^{-4} \Sigma_0^{vv}, \\ \Sigma_t^{xv} &= -\beta^2 t \Sigma_0^{xx} + 4\beta t \Gamma^{-2} \Sigma_0^{vv} \\ &\quad - 2\beta^2 t^2 \Gamma^{-1}(\Sigma_0^{xx} - 2) - 8\beta^2 t^2 \Gamma^{-3} \Sigma_0^{vv}, \\ \Sigma_t^{vv} &= \frac{\Gamma^2}{4} \left(e^{4\beta t\Gamma^{-1}} - 1 \right) + \beta t \Gamma + \beta^2 t^2 (\Sigma_0^{xx} - 2) \\ &\quad + \Sigma_0^{vv} (1 + 4\beta t^2 \Gamma^{-2} - 4\beta t \Gamma^{-1}). \end{aligned} \quad (4)$$

Then we can determine the probability of observing \mathbf{y} given \mathbf{u}_t by the following proposition.

Proposition 1.1. (Determine the probability of observing \mathbf{y} given \mathbf{u}_t) For simplicity of notation, $\mathbb{E}_{\mathbf{u}_0 \sim p(\mathbf{u}_0|\mathbf{u}_t)}$ is denoted as \mathbb{E} . Under the condition of \mathbf{u}_t at time t , the probability of observing \mathbf{y} can be derived from

$$\mathbb{E}[p(\mathbf{y}|\mathbf{u}_0)] = p(\mathbf{y}|\hat{\mathbf{u}}_0) + c\mathbb{E}\left[\|\mathcal{H}(\mathbf{x}_0 - \hat{\mathbf{x}}_0)\|^2 \|\mathbf{x}_0 - \hat{\mathbf{x}}_0\|^2\right], \quad (5)$$

where

$$c = \frac{1}{\sigma^2} \int_0^1 \frac{1}{2\pi^{d/2}\sigma^{d/2}} \exp\left(-\frac{s^2}{2}\right) (1-s) \left(\frac{s^2}{\sigma^2} - 1\right) ds. \quad (6)$$

Proof. Assuming \mathbf{u}_0 is fixed, known from the image restoration problem formulation, $h(s) = p(\mathbf{y}|s\mathbf{u}_0 + (1-s)\hat{\mathbf{u}}_0)$ is a quadratically differentiable function of s . So from the second-order Taylor formula, expand $h(s)$ at 0, we have

$$h(1) = h(0) + h'(0) + \int_0^1 h''(s)(1-s)ds, \quad (7)$$

which is

$$p(\mathbf{y}|\mathbf{u}_0) \quad (8)$$

$$= p(\mathbf{y}|\hat{\mathbf{u}}_0) + p'(\mathbf{y}|s\mathbf{u}_0 + (1-s)\hat{\mathbf{u}}_0)(\mathbf{u}_0 - \hat{\mathbf{u}}_0)|_{s=0} \quad (9)$$

$$+ \int_0^1 (\mathbf{u}_0 - \hat{\mathbf{u}}_0)^\top \frac{d^2 p(\mathbf{y}|s\mathbf{u}_0 + (1-s)\hat{\mathbf{u}}_0)}{ds^2} \quad (10)$$

$$\times (\mathbf{u}_0 - \hat{\mathbf{u}}_0)(1-s)ds. \quad (11)$$

Taking expectations for \mathbf{u}_0 on both sides, we have

$$\mathbb{E}[p(\mathbf{y}|\mathbf{u}_0)] \quad (12)$$

$$= p(\mathbf{y}|\hat{\mathbf{u}}_0) + \mathbb{E}\left[\int_0^1 (\mathbf{u}_0 - \hat{\mathbf{u}}_0)^\top \right] \quad (13)$$

$$\times \frac{d^2 p(\mathbf{y}|s\mathbf{u}_0 + (1-s)\hat{\mathbf{u}}_0)}{ds^2} (\mathbf{u}_0 - \hat{\mathbf{u}}_0)(1-s)ds]. \quad (14)$$

The calculation of $\frac{d^2 p(\mathbf{y}|s\mathbf{u}_0 + (1-s)\hat{\mathbf{u}}_0)}{ds^2}$ is very critical. Assuming \mathcal{H} is linear, it is not hard to obtain

$$\frac{dp(\mathbf{y}|s\mathbf{u}_0 + (1-s)\hat{\mathbf{u}}_0)}{ds} \quad (15)$$

$$= p(\mathbf{y}|s\mathbf{u}_0 + (1-s)\hat{\mathbf{u}}_0) \quad (16)$$

$$\times \frac{1}{\sigma^2} [\mathbf{y} - \mathcal{H}(s\mathbf{x}_0 + (1-s)\hat{\mathbf{x}}_0)] \mathcal{H}(\mathbf{x}_0 - \hat{\mathbf{x}}_0), \quad (17)$$

and

$$\frac{d^2 p(\mathbf{y}|s\mathbf{u}_0 + (1-s)\hat{\mathbf{u}}_0)}{ds^2} \quad (18)$$

$$= p(\mathbf{y}|s\mathbf{u}_0 + (1-s)\hat{\mathbf{u}}_0) \frac{\|\mathcal{H}(\mathbf{x}_0 - \hat{\mathbf{x}}_0)\|^2}{\sigma^2} \quad (19)$$

$$\times \left(\frac{\|\mathbf{y} - \mathcal{H}(s\mathbf{x}_0 + (1-s)\hat{\mathbf{x}}_0)\|^2}{\sigma^2} - 1 \right). \quad (20)$$

So

$$\mathbb{E}[p(\mathbf{y}|\mathbf{u}_0)] \quad (21)$$

$$= p(\mathbf{y}|\hat{\mathbf{u}}_0) + \mathbb{E}\left[\frac{\|\mathcal{H}(\mathbf{x}_0 - \hat{\mathbf{x}}_0)\|^2 \|\mathbf{x}_0 - \hat{\mathbf{x}}_0\|^2}{\sigma^2}\right] \quad (22)$$

$$\times \int_0^1 p(s)(1-s) \left(\frac{\|\mathbf{y} - \mathcal{H}(s\mathbf{x}_0 + (1-s)\hat{\mathbf{x}}_0)\|^2}{\sigma^2} - 1 \right) ds. \quad (23)$$

Thus conclusion of Eq. (5) is proved. \square

2. Posterior Estimation of Ground Truth

Proposition 2.1. (Estimate the mean of the initial image and velocity from the current moment) Under the condition of \mathbf{u}_t at time t , the posterior mean value of the image at time 0 can be derived from

$$[\Sigma_t^{-1} \mathbf{D}_t \mathbb{E}[\mathbf{u}_0|\mathbf{u}_t]]_\Delta = \nabla_{\mathbf{v}_t} \log p(\mathbf{u}_t) + [\Sigma_t^{-1} \mathbf{u}_t]_\Delta, \quad (24)$$

where $\Delta \doteq d+1, d+2, \dots, 2d$ indicates to take the second half of this vector.

Proof. First from the transition densities Eq. (2) we have

$$\begin{aligned} & p(\mathbf{u}_t|\mathbf{u}_0) \\ &= \mathcal{N}(\mathbf{u}_t; \boldsymbol{\mu}_t, \Sigma_t) \\ &= \frac{1}{(2\pi)^{d/2} |\Sigma_t|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{u}_t - \boldsymbol{\mu}_t)^\top \Sigma_t^{-1} (\mathbf{u}_t - \boldsymbol{\mu}_t) \right] \\ &= \frac{1}{(2\pi)^{d/2} |\Sigma_t|^{1/2}} \exp \left[-\frac{1}{2} (\mathbf{u}_t - \mathbf{D}_t \mathbf{u}_0)^\top \Sigma_t^{-1} (\mathbf{u}_t - \mathbf{D}_t \mathbf{u}_0) \right] \\ &= \frac{1}{(2\pi)^{d/2} |\Sigma_t|^{1/2}} \exp \left[-\frac{1}{2} \mathbf{u}_t^\top \Sigma_t^{-1} \mathbf{u}_t \right] \\ &\quad \times \exp \left[\mathbf{u}_0^\top \mathbf{D}_t^\top \Sigma_t^{-1} \mathbf{u}_t - \frac{1}{2} \mathbf{u}_0^\top \mathbf{D}_t^\top \Sigma_t^{-1} \mathbf{D}_t \mathbf{u}_0 \right]. \end{aligned}$$

To simplify notation, let $p_0(\mathbf{u}_t) = \frac{1}{(2\pi)^{d/2} |\Sigma_t|^{1/2}} \exp \left[-\frac{1}{2} \mathbf{u}_t^\top \Sigma_t^{-1} \mathbf{u}_t \right]$, $T(\mathbf{u}_t) = \mathbf{D}_t^\top \Sigma_t^{-1} \mathbf{D}_t$, and $\varpi(\mathbf{u}_0) = \frac{1}{2} \mathbf{u}_0^\top \mathbf{D}_t^\top \Sigma_t^{-1} \mathbf{D}_t \mathbf{u}_0$, then we have

$$p(\mathbf{u}_t|\mathbf{u}_0) = p_0(\mathbf{u}_t) \exp [\mathbf{u}_0^\top T(\mathbf{u}_t) - \varpi(\mathbf{u}_0)].$$

Integrate over initial data and velocity pair distribution we obtain

$$\begin{aligned} p(\mathbf{u}_t) &= \int p(\mathbf{u}_t|\mathbf{u}_0) p(\mathbf{u}_0) d\mathbf{u}_0 \\ &= p_0(\mathbf{u}_t) \int \exp [\mathbf{u}_0^\top T(\mathbf{u}_t) - \varpi(\mathbf{u}_0)] p(\mathbf{u}_0) d\mathbf{u}_0. \end{aligned}$$

In order to get the score, then take the derivative of \mathbf{v}_t on both sides of the previous formula

$$\begin{aligned} & \nabla_{\mathbf{v}_t} p(\mathbf{u}_t) \\ &= \nabla_{\mathbf{v}_t} p_0(\mathbf{u}_t) \int \exp [\mathbf{u}_0^\top T(\mathbf{u}_t) - \varpi(\mathbf{u}_0)] p(\mathbf{u}_0) d\mathbf{u}_0 \\ &\quad + p_0(\mathbf{u}_t) \int \nabla_{\mathbf{v}_t} [\exp [\mathbf{u}_0^\top T(\mathbf{u}_t) - \varpi(\mathbf{u}_0)]] p(\mathbf{u}_0) d\mathbf{u}_0 \\ &= \frac{\nabla_{\mathbf{v}_t} p_0(\mathbf{u}_t)}{p_0(\mathbf{u}_t)} p(\mathbf{u}_t) \\ &\quad + \left[p_0(\mathbf{u}_t) \int (\nabla_{\mathbf{u}_t} [T(\mathbf{u}_t)])^\top \mathbf{u}_0 \exp [\mathbf{u}_0^\top T(\mathbf{u}_t) - \varpi(\mathbf{u}_0)] p(\mathbf{u}_0) d\mathbf{u}_0 \right]_\Delta \\ &= \frac{\nabla_{\mathbf{v}_t} p_0(\mathbf{u}_t)}{p_0(\mathbf{u}_t)} p(\mathbf{u}_t) \\ &\quad + \left[(\nabla_{\mathbf{u}_t} [T(\mathbf{u}_t)])^\top \int p_0(\mathbf{u}_t) \mathbf{u}_0 \exp [\mathbf{u}_0^\top T(\mathbf{u}_t) - \varpi(\mathbf{u}_0)] p(\mathbf{u}_0) d\mathbf{u}_0 \right]_\Delta \\ &= \frac{\nabla_{\mathbf{v}_t} p_0(\mathbf{u}_t)}{p_0(\mathbf{u}_t)} p(\mathbf{u}_t) \\ &\quad + \left[(\nabla_{\mathbf{u}_t} [T(\mathbf{u}_t)])^\top \int \mathbf{u}_0 p(\mathbf{u}_t|\mathbf{u}_0) p(\mathbf{u}_0) d\mathbf{u}_0 \right]_\Delta. \end{aligned}$$

Divide both sides by $p(\mathbf{u}_t)$, that is to say

$$\begin{aligned} & \frac{\nabla_{\mathbf{v}_t} p(\mathbf{u}_t)}{p(\mathbf{u}_t)} \\ &= \frac{\nabla_{\mathbf{v}_t} p_0(\mathbf{u}_t)}{p_0(\mathbf{u}_t)} + \left[(\nabla_{\mathbf{u}_t} [T(\mathbf{u}_t)])^\top \int \mathbf{u}_0 \frac{p(\mathbf{u}_t|\mathbf{u}_0) p(\mathbf{u}_0)}{p(\mathbf{u}_t)} d\mathbf{u}_0 \right]_\Delta. \end{aligned}$$

Transforming the formula and simplifying the notation, we get

$$\begin{aligned} & [\Sigma_t^{-1} \mathbf{D}_t \mathbb{E}[\mathbf{u}_0|\mathbf{u}_t]]_\Delta \\ &= \left[[(\nabla_{\mathbf{u}_t} [T(\mathbf{u}_t)])^\top] \mathbb{E}[\mathbf{u}_0|\mathbf{u}_t] \right]_\Delta \\ &= \nabla_{\mathbf{v}_t} \log p(\mathbf{u}_t) - \nabla_{\mathbf{v}_t} \log p_0(\mathbf{u}_t) \\ &= \nabla_{\mathbf{v}_t} \log p(\mathbf{u}_t) + [\Sigma_t^{-1} \mathbf{u}_t]_\Delta. \end{aligned}$$

The conclusion of Eq. (24) is proved. \square

References

- [1] Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with critically-damped langevin diffusion. *arXiv preprint arXiv:2112.07068*, 2021. [1](#)
- [2] Simo Särkkä and Arno Solin. *Applied stochastic differential equations*, volume 10. Cambridge University Press, 2019. [1](#)