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A. Comparison with Normal Cross-Attention

As discussed in the Sec. 3.1 of main paper, we de-
liberately design our clip-kMaX with the k-means cross-
attention [7], which we empirically found to be very ef-
fective for handling the extremely large sequence of spa-
tially and temporally flattened clip features. We now elab-
orate on the experiments and particularly compare with the
normal (i.e., original) cross-attention [3] as well as the ad-
vanced latent memory cross-attention [!] (i.e., the cross-
attention mechanism used in TubeFormer [ 1], which adopts
latent memory to facilitate attention learning between video
frames).

Tab. 1 summarizes our findings. To ensure the fairness,
we employ the same backbone Axial-ResNet50-B1 [4] that
has been pretrained on ImageNet-1K and Cityscapes. The
baseline, employing the normal cross-attention module,
yields the performance of 68.4% STQ. The performance
can be further improved by 1.6% STQ, if we adopt the
latent memory [!] in the cross-attention module. By con-
trast, our clip-kMaX, adopting the k-means cross-attention
mechanism, attains 73.9% STQ, significantly outperform-
ing the conventional cross-attention and latent memory
cross-attention by +5.5% and +3.9% STQ, respectively.

k-means cross-attention adopted by our proposed clip-kMaX
achieves the best STQ than the normal cross-attention and la-
tent memory cross-attention, demonstrating the effectiveness of
k-means cross-attention in video understanding task.

size of matching space S (i.e., M x N)
T = best
memory 7 = 1000 (naive-MB: 7 =1,
LA-MB: 7 = 10)
average max average max
naive-MB 67.1 336 25.1 196
LA-MB 19.7 94 2.8 24

Table 2. Quantitative analysis on matching space size between
naive-MB and our LA-MB. The size of matching space S could
help us understand the difficulty of matching M objects in the
memory with the detected IV objects in the current frame. 7 is the
hyper-parameter to refresh out the old objects. We consider two
cases, where 7 = 1000 to mimic the case where we barely remove
the old objects, and 7 = best uses the best hyper-parameter value
for each setting.

The improvement is attributed to the effectiveness of k-
means cross-attention that performs the cluster-wise argmax
on cluster centers. Additionally, we show that our proposed
LA-MB is complementary to clip-kMaX, which sets the
best STQ performance (74.7 STQ). Our results suggest that
using k-means cross-attention can reduce the ambiguity in
cross-attention between queries and large flattened clip fea-
tures, resulting in a higher quality of video panoptic seg-
mentation results.

B. Analysis on Memory Matching Space

In the Sec. 3.2 of main paper, we address the limitations
of the previous memory buffer approach [0], referred as



FPS

method backbone frame size scenario params | FLOPs
average | worst
375 1242 (KITTL-STEP) Onhne. (T=1) 56.4M 83G 41.2 40.8
Video-kMaX ResNetS0 Near-online (T=2) 56.4M | 167G 234 23.3
720p (VIPSeg) Online (T=1) 56.4M 162G 24.4 24.0
p g Near-online (T=2) | 56.4M | 324G | 136 | 135
375 1242 (KITTL-STEP) Onhne. (T=1) 742M | 118G 31.0 30.8
. . Near-online (T=2) 742M | 236G 17.2 17.0
Video-kMaX | Axial-ResNet50-B1 .
720p (VIPSeg) Online (T=1) 742M | 231G 18.2 18.2
p g Near-online (T=2) | 74.2M | 461G 9.9 9.8
375 1242 (KITTI-STEP) Onllng (T=1) 231.6M | 370G 12.9 12.8
. Near-online (T=2) | 231.6M | 740G 6.9 6.8
Video-kMaX ConvNeXt-L -
720p (VIPSeg) Online (T=1) 231.6M | 715G 7.0 6.9
P & Near-online (T=2) | 231.6M | 1431G | 3.7 3.7

Table 3. Model complexity. We report the inference complexity of our Video-kMaX in terms of params, FLOPs, and FPS (frames
per second) on a V100 GPU, under both the online and near-online scenarios. We report three backbones, including ResNet50, Axial-
ResNet50-B1, and ConvNeXt-L, on both the KITTI-STEP and VIPSeg datasets.

naive-MB. One of the limitations of naive-MB is the huge
matching space in memory decoding, which increases the
difficulty of matching and thus results in low association
quality. From that perspective, we empirically prove that
our hierarchical matching scheme, LA-MB, can effectively
reduce the matching space size as shown in Tab. 2. To do so,
we calculate the size of the similarity matrix S (i.e., M X N,
where there are M objects in the memory and N detected
objects in the current frame) to quantitatively measure the
matching space size. We note that modern approaches [6]
adopt a memory refreshing strategy, where the old objects
stored in the memory will be removed if they are 7-frame
older than the current frame, which, to some degree, alle-
viates the issue of large matching space. However, we will
show that using the memory refreshing strategy alone is not
sufficient to reduce the matching space size. We compare
the matching space between naive-MB and our LA-MB un-
der two cases of 7, which is the hyper-parameter to refresh
out the old objects in the memory, affecting the matching
space size. In the first case, we set 7 to 1000, which mim-
ics the ideal scenario where we have a very large memory
and the old objects are barely removed, aiming to exclude
the effect of refreshing strategy and focus on the memory
buffer approach itself. As shown in the table, we can ob-
serve that LA-MB can greatly improve the matching space
efficiency by a healthy margin (i.e., 3.4 x smaller and 3.6x
smaller in average and max values, respectively). In the sec-
ond case, 7 is set to be the optimal value for each memory
buffer approach (i.e., 1 for naive-MB and 10 for LA-MB).
As shown in the table, the memory refreshing strategy effec-
tively reduces the matching space size for naive-MB. How-
ever, our LA-MB still outperforms naive-MB by achieving
9.1x and 8.2x more efficient matching space in average
and max value, respectively.
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Figure 1. Query Visualization on KITTI-STEP val set. We use
Video-kMaX with Axial-ResNet50-B1 backbone that is trained on
KITTI-STEP and then plot the location of averaged mask center
(including all stuff and things) predicted by each query.

C. Analysis on Model Complexity

In Tab. 3, we measure params, FLOPs, and FPS for our
method, using a Tesla V100 GPU with CUDA 11.0 and
batch size 1. We run the inference 3 times to obtain the
average and worst FPS.

D. Algorithm for our LA-MB

In Alg. 1, we provide the algorithm for our Location-
Aware Memory Buffer (LA-MB), which consists of two
phases: Encoding phase to store the previous object fea-
tures, and Decoding phase to associate current objects with
the objects stored in the memory buffer. For better under-
standing, we also attach our code snippet in the supplemen-
tary materials.



Algorithm 1: Algorithm for LA-MB
Input: .
1. LA-MB = {(¢{~", 05" })L, with M encoded
objects until frame ¢ — 1.
2. Feature set (g;, b;) of object i in current frame ¢.
3. Panoptic map P € R*W of previous frame
t—1
QOutput: (updated ID of object ¢, updated LA-MB)
1 begin

2 # Decoding phase.

3 if Video-Stitch(object i and P) < M then
4 # k is the updated ID of object i.

5 k < Video-Stitch(object ¢ and P)

6 else

7 fi.) = eI =bIT - cos(qi, )
8 r = arg max, (f(4,5)}L;)

9 if f(i,7) > « then

10 | ke

11 else

12 | ke M+1

13 # Encoding phase.
14 if k& < M then

15 # The object is tracked in the memory.
16 @t =(1—=Na "+ g
17 bt =b;
18 forje{l,.,k—1,k+1,..M}do
19 L g = (j;_l
it pt—1 rt—1 _ pt—2
m b= G )
21 else
22 # The object is new.
23 a1, = 4
24 bt =b;
25 forj € {1,..,M} do

2 L g = (j§_1
ot pt—1 Tt—1 2t—2
27 bt = bt 4 (b —bE7?)

28 | return (k, updated LA-MB)

E. Visualization Anaylsis

More qualitative results We show some visualization re-
sults in Fig. 2 for VIPSeg, where the baseline naive-MB
fails to associate persons in a crowd, since they have similar
appearance features. On the other hand, our LA-MB cor-
rectly associates the same person by effectively exploiting
both the appearance and location features. In our supple-
mentary submission, we also include video panoptic seg-
mentation results on the validation sets of KITTI-STEP [5]
and VIPSeg [2]. Our Video-kMaX (consisting of clip-

kMaX and LA-MB) demonstrates more clear and consistent
video results than the baselines.

Structural prior learned by queries We observe that the
object queries learned by our Video-kMaX demonstrate a
structural prior that a particular query will respond to ob-
jects around a specific location on the image plane. To
visualize the structural prior, for each query, we compute
the mean location center of all its segmented objects in the
whole KITTI-STEP validation set, and show the scatter plot
in Fig. 1. As shown in the figure, each object query is re-
sponsible to segment objects around a specific location on
the image plane. Interestingly, the object queries are scat-
tered mostly along a vertical and a horizontal line, showing
the property of ego-centric car in KITTI-STEP, where the
street-view images are collected by a driving car.

Failure case and Limitation We analyze the failure
mode of our Video-kMaX in Fig. 3. The first row and sec-
ond row are video frames and corresponding video panop-
tic results with our Video-kMaX, respectively. We observe
that a person initially assigned with ID number 99 until
frame 2 is re-assigned with different ID numbers, i.e., 107
(in frame 3) and 108 (in frame 4). The ID switch could
be attributed to two reasons. First, the appearance feature
of the occluded person (i.e., person ID 107 in frame 3) is
not reliable, as most of its discriminative appearance re-
gions are occluded. Second, the target object demonstrates
a large random movement, violating our slow linear motion
assumption encoded by the location feature. This failure
case presents a challenging but interesting research direc-
tion to further improve our model by strengthening both ap-
pearance and location features.
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(a) naive-MB

(b) LA-MB

Figure 2. Visualization results on VIPSeg val set. The baseline naive-MB, only exploiting the appearance feature, fails to associate the
same person, as neighboring people have similar appearance features. On the other hand, our LA-MB, exploiting both appearance and
location features, successfully associates the same person.

Figure 3. Failure case on VIPSeg val set. The target object is initially assigned with ID 99. Its ID switches to 107 and 108 in frame 3 and
frame 4, respectively. Our method fails to track the target object, because it is heavily occluded and moves at a large random pace, making
both appearance and location features unreliable.
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