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1. Overview

The supplementary material is organized as follows. First, the mask visualization is shown in Section. 2. The Derivation of

the proximal operators is presented in Section. 3, followed by the Derivation of the nighttime non-blind deblur algorithm in

Section. 4. The implementation details of the unified algorithm are elaborated in Section. 5, and more analyses are presented in

Section. 6, 7, 8, 9 and 10. Finally, more experimental results on the benchmark datasets and real-world blurry images are given

in Section. 11.

2. Mask Visualization

This part presents the visualizations of the pixel stretching mask and the image segment mask, followed by the analysis of

the cross-channel operation.

2.1. Pixel Stretching Mask

The pixel stretching mask M serves as a clipping function to make the value of the blurred image within the sensor range,

and an example of the visualization is illustrated in Fig. 8. Fig. 8 (a) is the blurred image. Here, we visualize the deblurred

result and the pixel stretching mask of the G channel in Fig. 8 (b) and (c), where the heat maps are used to include the pixel

values out of the sensor range. Similar results can be obtained in R and B channels as well. Fig. 8 (b) shows that the pixel

values of saturated pixels can be out of the sensor range [0, 1] during deconvolution. This kind of outlier often causes severe

artifacts, so the pixel stretching mask M (consisting of MG, MR, and MB) is used to adjust the pixel value of blurred images.

Fig. 8 (d) is the deblurred result after applying the pixel stretching mask M .

(a) B (b) IG (c) MG (d) I

Fig. 8. Visualization of the deblurred result and the pixel stretching mask. (a) Blurred image B. (b) The deblurred result of the G channel IG.

(c) The pixel stretching mask MG corresponding to (b). (d) The deblurred result I .

2.2. Image Segment Mask

As suggested by [15], we can decouple saturated pixels from the blurred image through a few operations. For instance,

Fig. 9 (a) is the blurry image B with saturated pixels as well as a provided kernel K, and Fig. 9 (b) is the corresponding hard

threshold mask of Fig. 9 (a). Empirically, we set the hard threshold value as 0.9 as suggested in [15] and the parameter is not
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sensitive to the exact value. During deconvolution, non-saturated pixels near the saturation region can already be affected by

the saturated pixels, so image dilation is adopted for the saturation region S to reduce impacts on boundaries. Fig. 9 (c) is

the corresponding dilated image of Fig. 9 (b) and Fig. 9 (d) is the corresponding dilated mask MS of (c), where the binary

structuring element is in the shape of the blur kernel. We can effectively segment saturated pixels from the non-saturation

region through the above operations. The corresponding image segment mask MU as well as the non-saturation region MU ◦B
extracted with MU are demonstrated in Fig. 9 (e) and Fig. 9 (f).

(a) Blurry input (b) Hard threshold mask for B (c) Dilated image

(d) MS (e) MU (f) MU ◦B

Fig. 9. Illustration of segment masks. (a) Blurred image B with saturated pixels and a provided kernel. (b) The corresponding hard threshold

mask of (a). (c) The corresponding dilated image of (b). (d) The corresponding dilated mask MS of (c) with the structuring element in the

shape of blur kernel. (e) The image segment mask MU. (f) Non-saturation regions MU ◦B extracted with the mask MU.

2.3. Analysis of the Cross­Channel Operation

The proposed segmentation process considers cross-channel consistency to refine the mask. Fig. 10 (a) is the mask MU

without considering cross-channel consistency, and Fig. 10 (c) is the deblurred result corresponding to Fig. 10 (a). Take

the color of Fig. 10 (a) as an example: the white pixels in the mask MU indicate that all RGB channels are not saturated,

and the black pixels in the mask represent that all channels are saturated. By the same token, the cyan pixels in the mask

mean that both B and G channels are not saturated. From Fig. 10 (c), this color mismatch will generate some color artifacts

during deconvolution. Hence, we incorporate cross-channel consistency to refine the mask, and the refined mask and the

corresponding deblurred result is visualized in Fig. 10 (b) and Fig. 10 (d).

3. Derivation of the Proximal Operators

In this part, we go through the derivation of the proximal operators to the Poisson data prior and the indicator function.

Refer to [14] for more details.



(a) MU w/o cross-channel (b) MU w/ cross-channel (c) Deblurred result w/ (a) (d) Deblurred result w/ (b)

Fig. 10. The cross-channel consistency removes color artifacts from outliers of the image segment mask.

3.1. Proximal operator for the Poisson data prior

We can define the proximal operator for the maximum likelihood estimator of the Poisson distribution as follows:

ProxP,ρ(V ,B) = argmin
Z

P(Z,B) +
ρ

2
||Z − V ||22

= argmin
Z

∑

i

Zi −Bi log(Zi) + log(Bi!) +
ρ

2
||Z − V ||22

= argmin
Z

∑

i

Zi −Bi log(Zi) +
ρ

2
||Z − V ||22

= argmin
Z

1
TZ −BT log(Z) +

ρ

2
||Z − V ||22.

(19)

To solve the proximal operator, we can equate the first-order derivative of the Eq. (19) to zero as follows:

1− diag(Z−1)B + ρ(Z − V ) = 0. (20)

When looking at the Eq. (20) with respect to an individual element Zi in Z, we have:

1− Bi

Zi

+ ρ (Zi − Vi) = 0. (21)

The solution to Eq. (21) is the root of a quadratic equation so that we can define the proximal operator as:

ProxP,ρ(V ,B) = −
(
1− ρV

2ρ

)

±

√
(
1− ρV

2ρ

)2

+
B

ρ
. (22)

Due to the camera sensor range of image pixel values, we are only interested in the positive one. Thus Eq. (22) can be reduced

to:

ProxP,ρ(V ,B) = −
(
1− ρV

2ρ

)

+

√
(
1− ρV

2ρ

)2

+
B

ρ
, (23)

which is a pixel-wise operator without any iterations, and ρ is a parameter for the ADMM algorithm.

3.2. Proximal operator for indicator function

We can define the proximal operator of the non-negative constraint as:

Prox■R+
(V ) = argmin

Z

■R+(Z) +
ρ

2
||Z − V ||22

= arg min
Z∈R+

ρ

2
||Z − V ||22

=

{

Vi, Vi > 0

0, Vi ≤ 0

= max(Vi, 0),

(24)



where Prox■R+
is a projection operator onto the convex set R+ and Vi denotes individual element in V .

4. Derivation of Nighttime Non-blind Deblur Algorithm

As shown in Fig. 3 in our manuscript, we can suppress ringing artifacts by separating saturated pixels from the non-saturation

region with the image segment mask MU. Hence, we formulate two optimization problems: one for both saturation and

non-saturation regions (i.e., Eq. (7) in our manuscript) and the other for refining the non-saturation regions suffering severe

ringing (i.e., Eq. (8) in our manuscript). Next, we will go through the derivation of the two optimization problems.

4.1. Derivation of an optimization problem with both saturated pixels and non­saturated pixels

Based on Eq. (9) in our manuscript, we reformulate Eq. (7) in our manuscript as follows:

argmin
I

1
T (KI)− (

1

M
◦B)T log (KI) + log((

1

M
◦B)!) + λR(I), (25)

where I , B, M are the vectorized form of I , B, M and K is the Toeplitz matrix of K. Because log(( 1
M
◦B)!) is a constant

in the minimization problem with respect to I , we drop it and re-write Eq. (25) as follows:

argmin
I

1
T (KI)− (

1

M
◦B)T log (KI) + λR(I). (26)

By introducing the auxiliary variables Z1 and Z2, we formulate Eq. (26) as the standard form of ADMM:

argmin
I

1
T (Z1)− (

1

M
◦B)T log (Z1) + λR(Z2),

s.t.

[
K
I

]

︸ ︷︷ ︸

A

I −
[
Z1

Z2

]

︸ ︷︷ ︸

Z

= 0,
(27)

where A denotes the combined matrix by stacking the component matrices and Z denotes the auxiliary variable.

Then, we formulate the augmented Lagrangian of Eq. (27) as follows:

Lρ(I,Z,Y ) = 1
T (Z1)− (

1

M
◦B)T log (Z1) + λR(Z2)

+ Y T (AI −Z)

+
ρ

2
||AI −Z||22,

(28)

where Y denotes the Lagrangian multiplier and ρ denotes the penalty parameter.

To combine the linear and quadratic terms in Eq. (28), U = Y

ρ
is defined as the scaled Lagrangian multiplier and we have:

Y T (AI −Z) +
ρ

2
||AI −Z||22 =

ρ

2
||AI −Z||22 + Y T (AI −Z) +

ρ

2
||Y
ρ
||22 −

ρ

2
||Y
ρ
||22

=
ρ

2
(||AI −Z||22 + 2(

Y

ρ
)
T

(AI −Z) + ||Y
ρ
||22)−

ρ

2
||Y
ρ
||22

=
ρ

2
||AI −Z +

Y

ρ
||22 −

ρ

2
||Y
ρ
||22

=
ρ

2
||AI −Z +U ||22 −

ρ

2
||U ||22.

(29)

Based on Eq. (29), we reformulate Eq. (28) as the scaled augmented Lagrangian:

Lρ(I,Z,U) = 1
T (Z1)− (

1

M
◦B)T log (Z1) + λR(Z2)

+
ρ

2
||AI −Z +U ||22

− ρ

2
||U ||22,

(30)

where U denotes the scaled Lagrangian multiplier, and there are three subproblems, Z1, Z2 and I . Now, we separately solve

the three subproblems, Z1, Z2 and I as follows:



Z1-subproblem

argmin
Z1

1
T (Z1)− (

1

M
◦B)T log (Z1) +

ρ

2
||Z1 − (KI +U1)||22 (31)

Replace KI +U1 with V1 and formulate Eq. (31) as the proximal operator of the Poisson data term in Eq. (23):

argmin
Z1

1
T (Z1)− (

1

M
◦B)T log (Z1) +

ρ

2
||Z1 − V1||22

= ProxP,ρ(V1,
1

M
◦B)

= −
(
1− ρV1

2ρ

)

+

√
(
1− ρV1

2ρ

)2

+
1
M
◦B
ρ

,

(32)

where V1 = KI +U1.

Z2-subproblem

argmin
Z2

λR(Z2) +
ρ

2
||Z2 − (I +U2)||22 (33)

Replace I +U2 with V2, and we can formulate the solution to Z2-subproblem as a CNN denoiser. Here, we plug and play the

pre-trained DRUNet [17] into our algorithm, and Eq. (33) can be written as:

argmin
Z2

λR(Z2) +
ρ

2
||Z2 − V2||22

= ProxλR,ρ(V2)

= Denoiser(V2,

√

λ

ρ
),

(34)

where V2 = I +U2.

I-subproblem

argmin
I

ρ

2
||AI − (Z −U)||22

=argmin
I

||
[
K
I

]

︸ ︷︷ ︸

A

I − (Z −U)||22 (35)

Replace Z −U with V , and we can get the closed-form solution for the quadratic subproblem as:

argmin
I

ρ

2
||AI − V ||22

=argmin
I

||
[
K
I

]

︸ ︷︷ ︸

A

I −
[
V1

V2

]

︸ ︷︷ ︸

V

)||22

=(KTK + 1)−1(KTV1 + V2).

(36)

Because K is a Toeplitz matrix of the blur kernel, the closed-form solution of Eq. (37) can be derived using Fourier transforms

as well as element-wise multiplications and divisions with the circular boundary conditions [16].

QuadFFT (V ,K)

= F−1(
F(K)

∗F(V1) + F(V2)

(|F(K)|2 + 1)

(37)

Following the padding paradigm of [11], we smoothly expand the blurred image to a large tile to satisfy the circular boundary

conditions to reduce boundary artifacts in deblurred results. After solving three subproblems, we can incorporate the proposed

pixel stretching mask M into the ADMM flow as shown in Algorithm 2.



Algorithm 2 ADMM algorithm for an optimization problem deblurring both saturated and non-saturated pixels

Input: B,K, λ, ρ, T .

Initialization: I(0) = Z
(0)
1 = Z

(0)
2 = U

(0)
1 = U

(0)
2 = B

for t← 0 to T − 1 do

I(t+1) = QuadFFT (Z
(t) −U (t),K)

M (t+1) = ΨM (I(t+1),K)

Z
(t+1)
1 = ProxP,ρ(KI(t+1) +U

(t)
1 ,

1

M (t+1)
◦B)

Z
(t+1)
2 = ProxλR,ρ(I

(t+1) +U
(t)
2 ,

√

λ/ρ)

U
(t+1)
1 = U

(t)
1 +KI(t+1) −Z

(t+1)
1

U
(t+1)
2 = U

(t)
2 + I(t+1) −Z

(t+1)
2

Z(t+1) =
[

Z
(t+1)
1 ;Z

(t+1)
2

]

U (t+1) =
[

U
(t+1)
1 ;U

(t+1)
2

]

end for

Output: I(T )

4.2. Derivation of an optimization problem addressing the refinement of non­saturated pixels

Based on Eq. (9) in our manuscript, we reformulate Eq. (8) in our manuscript as follows:

argmin
IU

1
T (MU ◦KIU)− (MU ◦B)T log (MU ◦KIU) + λR(IU) + IR+

(IU), (38)

where IU, B, MU are the vectorized form of IU, B,MU and K is Toeplitz matrix of K. Different from Eq. (26), we add a

non-negative constraint because MU is a binary mask. That is to say, as MU goes 0, the solution to IU should stay positive.

Therefore, we add a hard constraint to ensure the pixel value in R+.

By introducing the auxiliary variables Z2, Z3 and Z4, we formulate Eq. (38) as the standard form of ADMM:

argmin
IU

1
T (Z3)− (MU ◦B)T log (Z3) + λR(Z2) + IR+

(Z4),

s.t.





I

diag(MU)K
I





︸ ︷︷ ︸

AU

IU −





Z2

Z3

Z4





︸ ︷︷ ︸

ZU

= 0, (39)

where diag denotes the diagonal operator, AU denotes the combined matrix by stacking the component matrices and ZU

denotes the auxiliary variable. Then, we formulate the augmented Lagrangian of Eq. (39) as follows:

Lρ(IU,ZU,YU) = 1
T (Z3)− (MU ◦B)T log (Z3) + λR(Z2) + IR+

(Z4)

+ Y T
U (AUIU −ZU)

+
ρ

2
||AUIU −ZU||22,

(40)

where YU denotes the Lagrangian multiplier. Based on Eq. (29), we reformulate Eq. (40) as the scaled augmented Lagrangian:

Lρ(IU,ZU,UU) = 1
T (Z3)− (MU ◦B)T log (Z3) + λR(Z2) + IR+

(Z4)

+
ρ

2
||AUIU −ZU +UU||22

− ρ

2
||UU||22,

(41)

where UU denotes the scaled Lagrangian multiplier. Now, we separately solve the four subproblems, Z2, Z3, Z4 and IU as

follows:



Z2-subproblem

argmin
Z2

λR(Z2) +
ρ

2
||Z2 − (IU +U2)||22 (42)

Similar to the derivation of Eq. (33), we formulate the solution to Z2-subproblem as a plug-and-play CNN denoiser. Here, we

plug and play the pre-trained DRUNet [17] into our algorithm and Eq. (42) can be written as:

argmin
Z2

λR(Z2) +
ρ

2
||Z2 − V2||22

= ProxλR,ρ(V2)

= Denoiser(V2,

√

λ

ρ
),

(43)

where V2 = IU +U2.

Z3-subproblem

argmin
Z3

1
T (Z3)− (MU ◦B)T log (Z3) +

ρ

2
||Z3 − (MU ◦KIU +U3)||22 (44)

Similar to the derivation of Eq. (31), we formulate Eq. (44) as a proximal operator of the Poisson data prior in Eq. (23) as:

argmin
Z3

1
T (Z3)− (MU ◦B)T log (Z3) +

ρ

2
||Z3 − V3||22

= ProxP,ρ(V3,MU ◦B)

= −
(
1− ρV3

2ρ

)

+

√
(
1− ρV3

2ρ

)2

+
MU ◦B

ρ
,

(45)

where V3 = MU ◦KIU +U3.

Z4-subproblem

argmin
Z4

■R+
(Z4) +

ρ

2
||Z4 − (IU +U4)||22 (46)

We can formulate the solution to Z4-subproblem as a point wise projection operator in Eq. (24):

argmin
Z4

■R+
(Z4) +

ρ

2
||Z4 − V4||22

= Prox■R+
(V4)

= max(V4i, 0),

(47)

where V4 = IU +U4 and V4i denotes individual element in V4.

IU-subproblem

argmin
IU

ρ

2
||AUIU − (ZU −UU)||22

=argmin
IU

||





I

diag(MU)K
I





︸ ︷︷ ︸

AU

IU − (ZU −UU)||22 (48)



With VU = ZU −UU, we can get the closed-form solution for the quadratic subproblem:

argmin
IU

ρ

2
||AUIU − VU||22

= argmin
IU

||





I

diag(MU)K
I





︸ ︷︷ ︸

AU

IU −





V2

V3

V4





︸ ︷︷ ︸

VU

)||22

= (1+KT diag(MU)
T
diag(MU)K + 1)−1(V2 +KT diag(MU)

T
V3 + V4).

(49)

Although K is a Toeplitz matrix of the blur kernel, it is coupled with a Hadamard product with MU. Hence, we use the

conjugate gradient method [4] instead of the closed-form method in section 4.1. We define the solution of the conjugate

gradient procedure as follows:

QuadCG(MU,V ,K)

= (1+KT diag(MU)
T
diag(MU)K + 1)−1(V2 +KT diag(MU)

T
V3 + V4).

(50)

After solving the four subproblems, we can summarize these solutions with the image segment mask in Algorithm 3.

Algorithm 3 ADMM algorithm for an optimization problem addressing the refinement of non-saturated pixels

Input: B,K, λ, ρ, T .

Initialization: I
(0)
U

= Zk
(0) = Uk

(0) = B (k = 2, 3, 4)

Mask Initialization: MU
(0) = ΨMU

(B,K)
for t← 0 to T − 1 do

I
(t+1)
U

= QuadCG(MU
(t),Z

(t)
U
−U

(t)
U

,K)

MU
(t+1) = ΨMU

(I
(t+1)
U

,K)

Z
(t+1)
2 = ProxλR,ρ(I

(t)
U

+U
(t)
2 )

Z
(t+1)
3 = ProxP,ρ(MU

(t+1) ◦KIU
(t+1) +U

(t)
3 ,MU

(t+1) ◦B)

Z
(t+1)
4 = Prox■R+

(I
(t)
U

+U
(t)
4 )

U
(t+1)
2 = U

(t)
2 + I

(t+1)
U

−Z
(t+1)
2

U
(t+1)
3 = U

(t)
3 +M

(t+1)
U

◦KI
(t)
U
−Z

(t+1)
3

U
(t+1)
4 = U

(t)
4 + I

(t+1)
U

−Z
(t+1)
4

Z
(t+1)
U

=
[

Z
(t+1)
2 ;Z

(t+1)
3 ;Z

(t+1)
4

]

U
(t+1)
U

=
[

U
(t+1)
2 ;U

(t+1)
3 ;U

(t+1)
4

]

end for

Output: I
(T )
U

5. Implementation Details of the Unified Algorithm

In this part, we go through the implementation details of the unified algorithm, Algorithm 1 in our manuscript. After we

separately solve the two optimization problems, we can unify Algorithm 2 and 3 as well as the saturation awareness mechanism

(SAM) into an integrated framework as Algorithm 4. The proposed SAM decides whether to enable the highly-exposed mode

based on two criteria: whether the maximum pixel value is larger than the hard threshold β and whether the time step t is in

the first half of the whole optimization process, and the condition can be formulated as:

max(I(t)) ≥ β and t ≤ T

2
, (51)

where β denotes the hard threshold, T denotes the total number of iterations, and t denotes the time step of iterations.



Algorithm 4 Overall non-blind deblurring algorithm

Input: B,K, λ(0), ρ, T, α, β, γ.

Initialization: S̃(0) = 1, I(0) = Z(0) = U (0) = B
for t← 0 to T − 1 do

I(t+1) = QuadFFT (Z
(t) −U (t),K)

if highly-exposed then

I
(t+1)
U

= QuadCG(Z
(t)
U
−U

(t)
U

,MU
(t),K)

I(t+1) = Blend(I(t+1), I
(t+1)
U

,MS
(t))

Z
(t+1)
3 = ProxP,ρ(MU

(t+1) ◦KI(t+1) +U
(t)
3 ,MU

(t+1) ◦B)

Z
(t+1)
4 = ProxIR+

(I(t+1) +U
(t)
4 )

U
(t+1)
3 = U

(t)
3 +M

(t+1)
U

◦KI(t+1) −Z
(t+1)
3

U
(t+1)
4 = U

(t)
4 + I(t+1) −Z

(t+1)
4

MU
(t+1) = ΨMU

(I(t+1),K)

MS
(t+1) = ΨMS

(I(t+1),K)
end if

M (t+1) = ΨM (I(t+1),K)

Z
(t+1)
1 = ProxP,ρ(KI(t+1) +U

(t)
1 ,

1

M (t+1)
◦B)

Z
(t+1)
2 = Proxλ(t)R,ρ(I

(t+1) +U
(t)
2 )

U
(t+1)
1 = U

(t)
1 +KI(t+1) −Z

(t+1)
1

U
(t+1)
2 = U

(t)
2 + I(t+1) −Z

(t+1)
2

Z(t+1) =
[

Z
(t+1)
1 ;Z

(t+1)
2

]

U (t+1) =
[

U
(t+1)
1 ;U

(t+1)
2

]

if highly-exposed then

Z
(t+1)
U

=
[

Z
(t+1)
2 ;Z

(t+1)
3 ;Z

(t+1)
4

]

U
(t+1)
U

=
[

U
(t+1)
2 ;U

(t+1)
3 ;U

(t+1)
4

]

end if
if ||∆I

(t+1)||2 > ||∆I
(t)||2 and ||∆Z

(t+1)||2 > ||∆Z
(t)||2 and ||∆U

(t+1)||2 > ||∆U
(t)||2 and

1
√

n
||∆I

(t+1)||2 + 1
√

2n
||∆U

(t+1)||2 + 1
√

2n
||∆Z

(t+1)||2 < γ/S̃(t) then

Early Stop
end if

if max(I(t+1)) ≥ β and t ≤ T
2 then

Enable highly-exposed mode

I(t+1) = I
(t+1)
U

= Z(t+1) = U (t+1) = 0

Z
(t+1)
U

= U
(t+1)
U

= 0

MU
(t+1) = ΨMU

(B,K)

MS
(t+1) = ΨMS

(B,K)
end if

s̃(t+1) = max(I(t+1))

S̃(t+1) = min(2s̃
(t+1)

, α)
λ(t+1) = λ(0) · S̃(t+1)

end for

Output: I(T )

Suppose the highly-exposed mode is enabled. In that case, we re-initialize variables of subproblems to 0 for better

performance, so the time step condition ensures sufficient iterations and avoids re-initialization in the final optimization stage.

Besides, the Z2-subproblem is the same in both Algorithm 2 and 3, so we share the auxiliary variable Z2 in Algorithm 4.



After enabling the highly-exposed mode, we blend I and IU with alpha blending as proposed in [15]. Then, we use the

Gaussian kernel KG to blur the MS to avoid apparent boundaries between the two latent sharp images I and IU, and the

notation of alpha-blending can be written as:

Blend(I, IU,MS) = (MS ⊗KG) ◦ I + (1−MS ⊗KG) ◦ IU. (52)

Besides, since the image segment mask MS of the observed blurred image B encloses the largest possible saturation region,

we also use it as the boundary mask M
(0)
S

= ΨMS
(B,K) to reject sudden changes of pixel values in the non-saturation region.

Then, we can decompose I into:

I
(t)
MS

= M
(0)
S
◦M (t)

S
◦ I(t),

I
(t)
MU

= I(t) \ I(t)MS
= M

(t)
U
◦ I(t),

(53)

where M
(0)
S

denotes the binary guided mask from the observed blurred image corresponding to S
(0).

As shown in Fig. 3 of our manuscript, severe artifacts come with saturated pixels with high-intensity values. Better visual

results can be obtained by choosing the larger strength for the denoiser. Hence, we adaptively adjust the regularization weight

based on the maximum pixel value s̃(t+1) in Eq. (5) of our manuscript as follows:

λ(t+1) = λ(0) · S̃(t+1)

where S̃(t+1) = min(2s̃
(t+1)

, α).
(54)

Eq. (54) is a combination of the exponential and minimum functions where the adaptive weight S̃(t+1) controls the relation

between the regularization weight as well as the maximum pixel value, and the hard constraint α is designed to avoid over

large regularization weight. Empirically, we set λ0 as 2× 10−5 and α as 100. For computational efficiency, we adopt an early

stopping mechanism to reduce the number of iterations by monitoring the relative residue. Similar to [1], we define the residue

of auxiliary variables as follows:

∥∆I(t+1)∥2 = ∥I(t+1) − I(t)∥2,
∥∆U (t+1)∥2 = ∥U (t+1) −U (t)∥2,
∥∆Z(t+1)∥2 = ∥Z(t+1) −Z(t)∥2.

(55)

Regarding the relative residue, we define two early stopping conditions. The first one is Monotonic Decreasing Condition:

||∆I(t+1)||2 > ||∆I(t)||2 and

||∆Z(t+1)||2 > ||∆Z(t)||2 and

||∆U (t+1)||2 > ||∆U (t)||2.
(56)

It monitors whether the difference between primal and dual variables decreases monotonically. The second one is Saturation

Awareness Difference Sum Condition:

1√
n
||∆I(t+1)||2 +

1√
2n
||∆U (t+1)||2 +

1√
2n
||∆Z(t+1)||2 ≤ γ/S̃(t+1)

(57)

and it considers whether the sums of primal and dual residues are smaller than the saturation awareness threshold. For saturated

pixels with a higher maximum pixel value, more iterations come with better results, so we set the saturation awareness

threshold as γ/S̃(t+1). For pixels with high s̃(t+1), γ/S̃(t+1) is a relatively tighter threshold, and it comes with more iterations;

for pixels with low s̃(t+1), the constraint of γ/S̃(t+1) is relatively loose, and it comes with fewer iterations. If the residue of

primal and dual variables satisfies the above two conditions, the proposed method stops early for computational efficiency.

6. Analysis of the Robustness to Different Scale Factors

To evaluate the robustness of the proposed algorithm to different scale factors, we follow the synthetic scheme of Hu et

al. [9], which stretches the intensity of the pixels s times beyond a specific value and then clips to the sensor range [0, 1]. The

source of the synthetic 154 image pairs is from the saturated dataset [9]. The performance of deblurred results is summarized

in Fig. 11. In the normal case where the scale factor s equals 1, the proposed algorithm competes with the state-of-the-art

learning-based method, SVMAP [7]. However, the performance of SVMAP [7] dramatically declines as the scale factor s
increases, and our algorithm still has a competitive performance when the scale factor s is high (s = 6 and s = 9). That is to

say, our algorithm is robust to different scale factors because the saturation awareness mechanism (SAM) adopts proper mask

settings for different degrees of saturation.
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Fig. 11. Analysis of the robustness to different scale factors.
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Fig. 12. Analysis of the speed of blur models w.r.t image sizes.

7. Analysis of the Indicator Prior

The indicator prior is used to ensure the pixel values stay positive in each iteration. Without the indicator prior, negative pixel

values of IU can still be feasible solutions to Eq. (8), which will result in erroneous results. Table 4 shows that the PSNR/SSIM

values are 29.49/0.9155 and 29.98/0.9548 for the cases without and with the prior, respectively, in the saturated dataset [9].

Since the other two datasets [3, 12] do not activate the highly-exposed mode, the indicator function makes no difference to

those two datasets.

Table 4. Analysis for the indicator function.

Saturated

Prior PSNR SSIM

w/o indicator prior 29.49 0.9155

w/ indicator prior 29.98 0.9548

8. Analysis of the Run-time Comparison

Table 5 summarizes the run-time comparison on a machine with Intel Core i7-9700K CPU @3.60GHz and NVIDIA

GeForce RTX 3080 Ti, where the image size is 692x1048x3 pixels. Different from conventional optimization-based methods

[2, 5, 9, 13, 15], learning-based methods [6–8, 17, 18] usually have better inference speed. However, the long training time

and GPU resources can be issues, not to mention the extra effort when new datasets with different characteristics are added.

Although our method has a longer inference time, the proposed handling scheme is robust to saturated pixels with different

degrees of saturation. Moreover, our method uses existing DNN priors in our optimization flow. Thus, no extra training process

is required for nighttime deblurring.

Table 5. Run-time comparison.

Cho [5] Hu [9] Whyte [15] Pan [13] Chen [2] Dong [6] IRCNN [18] DPIR [17] RDGN [8] NBDN [3] SVMAP [7] Ours

Enable GPU - - - - - - v v v v v v

Run-time (sec) 22.99 15.50 9.44 67.75 17.56 15.27 0.70 10.98 3.99 1.51 1.83 20.26



9. Analysis of the Hyper-parameters

We elaborate on the meaning of all parameters: λ in Eq. (13) controls the denoiser strength, where the larger weight comes

with smoother results. ρ in Eq. (11) represents the penalty parameter of the auxiliary variable in the ADMM method. T is

the total number of iterations in the ADMM method, and more come with better convergence. φ is the hard threshold for

the image segment mask in Eq. (3). β in Eq. (51) is the threshold for the highly-exposed mode. The hard constraint α in

Eq. (17) is designed to avoid an overlarge regularization weight in our adaptive scheme. γ in Eq. (57) is the threshold of the

early stopping condition. The effects of the above parameters are evaluated on the saturated dataset [9]. As shown in Fig. 13,

the impacts of varying the hyper-parameters within a reasonable range (i.e., similar orders of magnitudes) are subtle to the

proposed algorithm.
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Fig. 13. Sensitivity analysis of hyper-parameters.

10. Analysis of the Speed of Revised Blur Model

In Section. 3.2, we rewrite the blur model in Eq. (6) to Eq. (7) for computational efficiency. With this modification, a

closed-form solution can be obtained. On the other hand, a Hadamard product will be involved when solving the original

model in Eq. (6), which requires a slower iterative conjugate-gradient method. We evaluate the run-time on images with respect

to image sizes from 256x256x3 to 1536x1536x3. As shown in Fig. 12, the proposed model performs better than the original

model regarding the run-time, especially for large image sizes.

11. More Experimental Results on the Benchmark Datasets

In this section, we visualize more deblurred results with conventional optimization-based methods [2, 5, 9, 13, 15] and

state-of-the-art learning-based methods [3, 6–8, 17, 18]. All the experimental results are generated by publicly available code

provided by the original authors to give a fair comparison. The deblurred results of the saturated dataset from Hu et al. [9] are

visualized in Fig. 14 − Fig. 16, and the deblurred results of the low-illumination dataset from Pan et al. [12] are visualized in

Fig. 17 − Fig. 18. Besides, the deblurred results of the night dataset from Chen et al. [3] are visualized in Fig. 19 − Fig. 21,

and the deblurred results of real-world blurry images are visualized in Fig. 22 − Fig. 23.
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Fig. 14. Comparison of the deblurred results between the proposed method and others.
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Fig. 15. Comparison of the deblurred results between the proposed method and others.
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Fig. 16. Comparison of the deblurred results between the proposed method and others.
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Fig. 17. Comparison of the deblurred results between the proposed method and others.
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(k) RGDN [8] (l) SVMAP [7] (m) NBDN [3] (n) Ours

Fig. 18. Comparison of the deblurred results between the proposed method and others.
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(k) RGDN [8] (l) SVMAP [7] (m) NBDN [3] (n) Ours

Fig. 19. Comparison of the deblurred results between the proposed method and others.
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Fig. 20. Comparison of the deblurred results between the proposed method and others.
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Fig. 21. Comparison of the deblurred results between the proposed method and others.
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Fig. 22. Comparison of the deblurred results of real world blurred image with saturated pixels from [10] with the kernel estimated by [13].
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Fig. 23. Comparison of the deblurred results of real world blurred image with saturated pixels from [9] with the kernel estimated by [9].
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