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1. Implementation Details

Training is performed for 500 epochs with cosine warm-
up scheduler. Experiments with ResNeXt-50 backbone are
performed with RangerLars optimizer [1] (RAdam opti-
mizer with Layer-wise Adaptive Rate Scaling (LARS) [2]
and lookahead [3]) with the maximum learning rate of 10−3

for the encoder and MHSA blocks and 2 × 10−3 for the
head. Experiments with ViT-B are performed with AdamW
[4] optimizer with the maximum learning rate of 3 × 10−4

and the weight decay of 10−2. The batch size is close to
192, unless a different value is specified (some experiments
required small adjustment to batch size to meet VRAM lim-
itations of our compute setup).

We also conduct a series of experiments evaluating the
utility of sharpness aware optimization using ASAM [5]
which was demonstrated as a useful optimizer in cross-view
matching applications by Zhu et al. [6], however it requires
32-bit precision which limits batch-size. By default, our ex-
periments do not incorporate ASAM unless indicated oth-
erwise.

ResNeXt-50 Model Variant: For our CNN-based ex-
periments we use ResNeXt-50 (32x4d) [7] which contains
25M parameters and has been demonstrated as a capable
foundation model for many vision tasks. We conduct ex-
periments using weights from semi-weakly supervised Im-
ageNet pretraining [8] as well as large scale pretraining on
a more extensive cross-view matching dataset [9] (see eval-
uation results in Section 4.6).

Following feature extraction, we perform an aggrega-
tion step using a multi-head self-attention (MHSA) module
containing two transformer layers. Specifically, the MHSA
contains a BN + conv layer for projection of the input fea-
ture map to 1024 channels, 2 sequential transformer lay-
ers, and a conv + BN + ReLU + conv layer to perform fi-
nal transformation of the feature map. The MHSA mod-
ule enables interaction between all parts of the feature map,
beyond the receptive field of the convolutional backbone,
to update the features before pooling. We do not add a
positional encoding as some previous approaches suggest
[10, 11] , and instead fully rely on the positional represen-
tation produced by convolutions, as suggested by Xie, et.
al [12]. The network head consists of a GeM pooling [13]
followed by a standard fast.ai [14] head setup with two lin-

ear fully connected layers, which output 1024 width global
embedding vector {Xgi , Xai

}.
ViT-B Model Variant: For our transformer-based ex-

periments we use a ViT-B model with BEiT-v2 [15] and
DEiT-v3 [16] pretraining (see Figure 1). BEiT-v2 utilizes
one of the most advanced at the moment self-supervised
pretraining techniques, which supposes the majority of vi-
sion benchmarks with a single model, if training is per-
formed at large scale [17]. Meanwhile, DEiT-v3 [16] pro-
vides one of the most advanced fully supervised ViT train-
ing setups. These models were chosen because they provide
close to state-of-the-art performance on a number of vision
tasks, given their small model size (ViT-B model size is
86M parameters, which is more than three times larger than
ResNeXt-50).

We adopt common components of many transformer net-
works including patch-wise image embedding, position em-
bedding and multi-head self-attention. The aerial image
Ia ∈ RH×W×C is converted into N P × P patches (our
model uses P = 16) yielding Ipi ∈ RN×(P×P×C). The
N patches are then flattened to dimension RN×P 2×C as
input to the linear projection layers to generate image to-
kens Iti ∈ RN×D. Image tokens are concatenated with a
learnable class token to form the embedding space of the
transformer model. following the standard definition for
ViT transformers [18].

Similar to the ResNeXt-50 configuration, we also have
independent aerial and ground transformers, but the em-
bedding is produced directly from the output of the clas-
sification token, without using any additional pooling layer
and head. The value of the classification token is modified
during propagation of the input through the transformer by
interaction of this token with all image tokens. The classi-
fication token contains the image summary, similar to the
pooled features in our MHSA module, however it is applied
at each network layer and is not limited by selection of the
average value over the feature map. Since transformers in-
trinsically have a receptive field equal to the image size,
there is also no need to add extra MHSA layers. For ex-
periments where FoV is not 90°, the positional encoding is
linearly interpolated to match the input image dimensions.

Since use of ViT-B models increases the computational
cost of training, which increases quadratically with the
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Figure 1. Visualization of query images under different test-time
FoV (left) and top-5 retrieved aerial images predicted from our
model. Ground truth aerial pairs are marked in green.

number of tokens, we consider only basic training without
use of ASAM optimizer and global negative mining strate-
gies. The increase of the computational cost for BEiT-B-v2
becomes apparent especially for unknown view direction or
FoV = 360° cases. In these cases, the size of the considered
input is large, and the GPU memory and computational cost
requirements increase by approximately 16 times in com-
parison to the configuration using FoV = 90° and known
view direction. To mitigate memory related overhead, we
use gradient checkpointing which allows for large enough
batch sizes for meaningful comparison.

Mixed precision is used for optimizing the training speed
and reducing GPU memory requirements. Large FoV train-
ing with ViT-B model is performed with using gradient
checkpointing. Training of ViT-B based setup takes approx-
imately 2.5 days for FoV = 90° model with known view di-
rection and approximately 8 days for FoV = 360° model at
2×V100 GPUs. In comparison, the ResNeXt50-based con-
figuration can be trained 2-3 times faster.

2. FoV-based Data Augmentation

Some training experiments were conducted using square
crop data augmentation, while evaluation is performed us-
ing horizontal cropping, following the precedent established
by existing approaches. During training, when FoV-based
augmentation is applied, we crop images according to a
Gaussian distribution centered around the target FoV with
σ = 10 similar to the approach described by Rodriques et
al. [19]. Using this approach, ground images are cropped
and resized from the original panorama corresponding to
the desired FoV. Table 1 shows image sizes used for all con-
sidered FoV and cropping strategies.

3. Negative Mining Strategy

Our best performing model uses a 2-step negative mining
strategy. In the first stage of training, we adopt an in-batch

FoV Horizontal Crop Square Crop
360 896× 224 896× 224
180 448× 224 448× 224
90 224× 224 224× 224
70 174× 224 174× 174 → 224× 224
60 149× 224 149× 149 → 224× 224
45 112× 224 112× 112 → 224× 224
30 75× 224 75× 75 → 224× 224

Table 1. Image sizes used for experiments with our two cropping
strategies.

negative mining strategy [20] where we select the N hard-
est samples within the batch which are used in loss compu-
tation. The value of N is gradually reduced following an
exponential decay strategy

N =
2b

1 + e3.5t

where t is the current training step expressed as a portion
of the total training from 0-1, and b is the batch size. This
results in hard negative pairs being gradually introduced to
training, which resulted in better performance during our
early experiments. The in-batch negative mining strategy is
applied to the first 50% of training. Afterwards we switch
to a global negative mining strategy as defined by Zhu et
al. [20], which leverages a FIFO queue to efficiently ap-
proximate the hardest negative samples in the dataset. We
maintain a queue size of roughly 8,000 image pairs and re-
place half of each batch with mined negatives.

4. Formative Experiments
To assess the contribution of different components of

our pipeline we conducted a set of initial experiments with
our ResNeXt-50 setup. We consider the case of unknown
view direction without polar transform and start with a dual
ResNeXt-50 setup. The base setup is trained with using
batch-all triplet loss with batch size of 64 for 48 epochs. As
a starting option we use Adam optimizer. This setup reaches
r@1 (top-1 recall) of 2.35%. Table 2 lists the change of the
performance at each step of pipeline improvement.

As a first step we added learning rate warmup and image
augmentation. Another addition to the model is incorpora-
tion of MHSA to enable interaction between different parts
of the image beyond the model receptive field to generate
features as described in Section 3.2. In the initial setup we
used 512 channels and a single MHSA block. This addi-
tion improved r@1 from 2.35% to 5.59% over the baseline
model.

Based on our previous experience, RangerLars optimizer
[1] and cosine learning rate scheduler gives better perfor-
mance than Adam for finetuning ResNeXt-50. Therefore,
we switched to this optimizer in our further ResNeXt-50



CVUSA, FoV = 90°, Unknown view-direction
Incremental mAP@5 r@1 r@5 r@1% r@5%
Improvements (%) (%) (%) (%) (%)
base ResNeXt50 - 2.35 9.59 54.21 88.16

+ MHSA
+ augmentation
+ warmup

- 5.59 17.98 70.98 94.48

+ RangeLars optimizer
+ cosine LR scheduler
+ large bs with fp16

23.40 14.95 38.73 88.03 98.38

+ ArcGeo loss 41.47 31.24 58.45 92.96 98.74
+architecture

optimization
+longer training

48.21 38.08 65.00 94.82 99.03

DSM at FoV = 90° [24] - 16.19 31.44 71.13 -
L2LTR at FoV = 90° [11] - 26.92 50.49 86.88 -

Table 2. Summary of initial experiments conducted to derive our
model architecture.

experiments. In addition, we enabled mixed precision fp16
training, which gave approximately x2 speedup, and al-
lowed us to increase the batch size to 192 (larger batch size
is favorable for batch-all losses). These changes improved
top-1 recall to 14.95%, which is very close to the perfor-
mance of 16.19% reported by Shi et al. [21].

The next big improvement of the model performance is
achieved by switching from triplet to ArcGeo loss, which
boosted r@1 nearly twice to 31.24%. Further model op-
timization includes use of two sequential multi-head self-
attention blocks in MHSA module, increasing the embed-
ding space and MHSA widths from 512 to 1024 as de-
scribed by Shi et al. [22], as well as increasing the length
of training to 500 epochs. These modifications boosted
r@1 to 38.08%, which is significantly higher than the pre-
viously reported SOTA for cross-view matching for FoV =
90° with unknown view direction (no polar transform) of
26.92% [11].

Further improvement of the basic setup includes use of
ASAM [23] optimizer, top-k in-batch mining and quasi-
negative mining as well as pretraining on full CVUSA
dataset, which is described in Section 3.4.

5. Effects of Negative Mining

We performed an additional set of experiments to quan-
tify performance improvement due our two-step negative
mining process. Table 3 shows results before and after ap-
plication of global negative mining for both known and un-
known view direction test cases. All models are trained us-
ing ArcGeo loss and received pretraining on the CVUSA-
full dataset.

In both cases we observe improved performance after ap-
plying global negative mining. The improvement is more
pronounced for the unknown view-direction test case where
r@1 increases from 54.28% to 66.13%.

Method View Negative r@1 r@5 r@10
Direction Mining (%) (%) (%))

Ours (ResNeXt-50) †* Unknown In-batch 54.28 80.36 87.47
Ours (ResNeXt-50) †♢* Global ArcGeo 66.13 87.51 91.90
Ours (ResNeXt-50) †* Known In-batch 91.00 97.53 98.48
Ours (ResNeXt-50) †♢* Known Global 93.49 97.93 98.75

Table 3. Quantitative results for FoV = 90° test case on CVUSA
using our two-step negative mining process. Step 1 includes in-
batch negative mining, followed by Step 2 which includes addi-
tional training with global negative mining. The ♢ symbol indi-
cates models which were trained using global negative mining.
The * symbol indicates our model which was pretrained on the
larger CVUSA-full dataset.

6. Effects of FoV-based Data Augmentation

A key benefit of our approach is the capability to operate
across a wide range of test FoVs, using a single model, re-
quiring no knowledge about query image sensor character-
istics. To further explore the relationship of train/test FoV
we conducted a series of ablation studies designed to char-
acterize the role of the FoV data augmentation described in
Section 4.2. We trained several versions of our model us-
ing varied training FoVs sampled from a Gaussian distribu-
tion with mean (µ) which was shifted between experiments.
For all experiments we use a fixed σ = 10◦. We consider
the case where view direction is known to properly iso-
late FoV as the variable of interest. We report performance
for several evaluation conditions using our best performing
ResNeXt-50 model after fine-tuning for 250 epochs in sev-
eral configurations shown in Figure 2.

While our model is robust to inference in a variety of
test-time FoV conditions, further finetuning using train-
time FoV distribution that is representative of test-time FoV
results in improved performance. For example, when test
imagery has FoV = 45°, finetuning using µ = 45◦ yields
an improved r@1 of 68.62% in contrast to 55.66% using
µ = 90◦ training as shown in Figure 2.

In cases where test-time FoV is known, such a finetun-
ing process would allow for more precise alignment of the
model’s embedding space to match the characteristics of the
test domain. We observe that even when training using very
small values of µ = 30◦, test accuracy for larger FoV does
not drop dramatically. Qualitatively, we see our model is
able to correctly rank images in a variety of test-time FoV
as shown in Figure 2.
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