
Supplementary Material

A. Clustering Algorithm
The algorithms presented in Algorithm .1 and Algo-

rithm .2 are utilized to cluster predicted instances obtained
from multiple forward passes through the StarDist model.

Algorithm .1: Clustering with Pixel Approach
Data: Set of samples S = {S1, S2, ..., SF }
Result: Clusters O = {O1, O2, ..., OM}

1 O = ∅
2 θIoU = 0.5 (IoU threshold)
3 z = 0
4 for Sf in S do
5 for Puf

in Sf do
6 if z > 0 then
7 for Om in O do
8 for Pvf in Om do
9 if IoU(Puf

, Pvf ) ≥ θIoU then
10 Add Puf

in Om

11 else
12 Add Puf

in Om+1

13 else
14 Add Puf

in Om

15 z+ = 1

16 Add Om in O

B. Quality of Certainty Score
The calibration diagrams in Figure 1 and Figure 2 with

bin size B = 10, show the calibration quality of the differ-
ent certainty scores using the Radial Approach with Monte-
Carlo Dropout technique (drate = 0.8, F = 20) on the
validation set for the DSB2018 and GlaS datasets. The di-
agrams compare hybrid certainty score (chyb), spatial cer-
tainty score (cspl), and fractional certainty score (cfrac).

In Figure 1, we observe that the hybrid certainty score
chyb for the DSB2018 dataset exhibits better calibration as
the certainty score closely approximates the expected accu-
racy.

However, in Figure 2, we observe that the GlaS dataset

Algorithm .2: Clustering with Radial Approach
Data: Set of samples

G = {{D1, R1}, {D2, R2}, ..., {DF , RF }}
Result: Clusters O = {O1, O2, ..., OM}

1 O = ∅
2 θd = 0.5 (Object probability threshold)
3 µG = ComputeMean(G)
4 C = NonMaxSuppression(µG)
5 for m in {1, 2, ..., | C |= M} do
6 Create a new cluster Om

7 for f in {1, 2, ..., F} do
8 Pmf

=
CreateInstance((xm, ym), {{rnxm,ym

}ni=1}f
9 if {dxm,ym}f ≥ θd then

10 Add Pmf
to Om

11 Add Om to O

exhibits unsatisfactory and notably elevated calibration er-
rors. This phenomenon can be attributed to the dataset’s
incongruity with the StarDist model, resulting in higher cer-
tainty scores for incorrect predictions.

C. Effects of Forward Passes on Certainties
Quality

The influence of the number of forward passes F on the
calibration of the hybrid certainty (chyb) for the DSB2018
and GlaS datasets was assessed and the results are visual-
ized in Figure 3 and Figure 4 . The calibration errors, mea-
sured by Pearson’s R, Expected Calibration Error (ECE),
and Maximum Calibration Error (MCE), are plotted against
F .

A consistent pattern emerges, resembling the observa-
tions made with the Bubble dataset. As the number of for-
ward passes increases, the calibration errors tend to con-
verge, aligning with the principles of the Central Limit The-
orem. Furthermore, distinct convergence behaviors are ob-
served for each dropout rate.
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Figure 1. Calibration diagrams illustrating certainty score estimation for the DSB2018 dataset. Panels (a), (b), and (c) show spatial certainty
(cspl), fractional certainty (cfrac), and hybrid certainty (chyb) scores, respectively. These scores are calculated using the Pixel Approach
and Monte-Carlo Dropout with a dropout rate of 0.8, and F = 20 forward passes. Notably, the hybrid certainty scores (chyb) demonstrate
superior calibration compared to individual certainty scores across three calibration error metrics: Pearson Correlation Coefficient (R),
Expected Calibration Error (ECE), and Maximum Calibration Error (MCE).
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Figure 2. Calibration diagrams illustrating certainty score estimation for the GlaS dataset. Panels (a), (b), and (c) show spatial certainty
(cspl), fractional certainty (cfrac), and hybrid certainty (chyb) scores, respectively. These scores are calculated using the Pixel Approach
and Monte-Carlo Dropout with a dropout rate of 0.8, and F = 20 forward passes. It is evident that the GlaS dataset demonstrates
unsatisfactory calibration for all certainty scores across three calibration error metrics: Pearson Correlation Coefficient (R), Expected
Calibration Error (ECE), and Maximum Calibration Error (MCE).

D. Effects of Dropout Location on Certainties
Quality

We conducted an investigation into the calibration of hy-
brid certainty (uhyb) obtained from various dropout layer
positions, as depicted in Figure 5. The number of forward
passes was kept constant at F = 20.

The calibration errors of hybrid certainty (uhyb) derived
from different dropout layer positions is presented in Fig-
ure 6, Figur 7, and Figure 8 for the Bubble, DSB2018, and
GlaS datasets. The influence of dropout layer locations on
calibration is assessed through calibration metrics, includ-
ing the Pearson Correlation Coefficient, Expected Calibra-
tion Error, and Maximum Calibration Error.

The relationship between the location of the dropout
layer and calibration performance does not exhibit consis-

tent patterns.

E. Intersection over Union

Intersection over Union (IoU ) is a metric used to assess
the accuracy of two masks, often in tasks like image seg-
mentation. It measures the extent of overlap between the re-
gions represented by the two masks. In simpler terms, IoU
helps you understand how much the areas covered by two
masks align with each other. It’s a way to quantify the sim-
ilarity between the shapes or regions defined by the masks.
This metric is especially valuable when dealing with tasks
where you want to compare how well two masks match each
other. A higher IoU score indicates that the masks closely
match, while a lower score suggests a greater discrepancy
between the regions defined by the masks.
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Figure 3. Plot showing calibration errors as a function of the number of forward passes for the DSB2018 dataset using the Monte-Carlo
Dropout and Deep Ensemble techniques (calibration errors as a function of the number of models in the case of Deep Ensemble). Panels (a)
to (c) depict certainty estimates using the Pixel Approach, while panels (d) to (f) represent certainty estimates using the Radial Approach.
Notably, the Deep Ensemble technique exhibits faster convergence of calibration errors compared to the Monte-Carlo Dropout technique.
Additionally, distinctive convergence patterns are observed for each dropout rate.

px,y =

{
1 if (x, y) belong to an instance
0 else

(1)

IoU(Pu, Pv) =

Y∑
y=1

X∑
x=1

px,yu · px,yv

px,yu + px,yv − px,yu · px,yv
(2)

Equation 1 defines the binary masks for the pixels. In
this equation, px,y represents the pixel value at coordinates
(x, y). If the pixel belongs to an instance of interest, px,y

is assigned a value of 1. Otherwise, if the pixel does not
belong to the instance, px,y is assigned a value of 0. This
binary representation helps distinguish between the pixels
that are part of the instance and those that are not. Equation
2 calculates the IoU between two binary masks Pu and Pv .
The goal of this equation is to quantify how well the mask
Pu aligns with the mask Pv . The summation over x and y
iterates through all pixels in the masks. The terms px,yu and
px,yv represent the binary pixel values in masks Pu and Pv at
the same coordinates (x, y), respectively. The IoU is then
calculated by dividing the sum of the element-wise prod-
uct px,yu · px,yv by the sum of the pixel values in Pu and Pv ,
minus the sum of the element-wise product. This calcula-
tion effectively captures the overlap between the two masks

and provides a value that indicates the degree of similarity
between the two masks.

F. Choice of Dropout Rates
To investigate the effect of dropout rates on uncer-

tainty estimation in instance segmentation with the StarDist
model, we carefully selected three distinct dropout prob-
abilities, namely 0.1, 0.5, and 0.8. The decision to use a
limited number of dropout rates was primarily driven by
computational complexity, as uncertainty estimation using
the sampling techniques can be computationally demand-
ing. By focusing on these representative dropout rates, we
aimed to strike a balance between resource efficiency and
comprehensive analysis.

Our choice of 0.1 and 0.8 as two extremes of the dropout
rates, and a dropout rate of 0.5, situated between the two
extremes, ensure that our investigation spans a relevant and
informative range of dropout rates. This selection enables
us to analyze uncertainty estimation with varying degrees
of dropout rates while maintaining a manageable computa-
tional load. The insights gained from studying these specific
dropout rates in combination with diverse layer locations
within the U-Net architecture will provide valuable contri-
butions to the understanding of uncertainty estimation for
instance segmentation in the context of the StarDist model.
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Figure 4. Plot showing calibration errors as a function of the number of forward passes for the GlaS dataset using the Monte-Carlo Dropout
and Deep Ensemble techniques (calibration errors as a function of the number of models in the case of Deep Ensemble). Panels (a) to
(c) depict certainty estimates using the Pixel Approach, while panels (d) to (f) represent certainty estimates using the Radial Approach.
Notably, the Deep Ensemble technique exhibits faster convergence of calibration errors compared to the Monte-Carlo Dropout technique.
Additionally, distinctive convergence patterns are observed for each dropout rate.

(a) Input of the U-Net (b) Down sampling block of the U-Net (c) Mid of the U-Net

(d) Up sampling block of the U-Net (e) Output of the U-Net (f) Full U-Net

Figure 5. Visualization of varying dropout layer locations within the U-Net block of the StarDist model, with the dropout layers highlighted
in green.

G. Uncertainty Visualization

In Figure 9, we showcase a series of example images
drawn from three distinct datasets, each serving to visualize
uncertainty and gauge the associated prediction certainty.

These images provide valuable insights into the model’s
certainty when predicting diverse instances across various
datasets.

In each image of Figure 9, the red polygons represent
median cluster predictions Pm | m ∈ {1, 2, ...,M}. The
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Figure 6. Plot showing calibration errors as a function of the dropout layer location for the Bubble dataset using the Monte-Carlo Dropout
techniques. Panels (a) to (c) depict certainty estimates using the Pixel Approach, while panels (d) to (f) represent certainty estimates using
the Radial Approach. The observed randomness in calibration errors implies a lack of apparent correlation between the dropout layer’s
placement.

region enclosed by the two yellow polygons delineates the
spatial uncertainty peculiar to each specific instance. Ad-
ditionally, the hybrid certainty score chyb for each bubble
prediction is conveniently located in the bottom-right cor-
ner.

Bubble and DSB2018 Dataset: Images in Figure 9a
and Figure 9b represent instances characterized by star-
convex shapes. Our observations reveal a distinct pattern
in certainty scores. Correct predictions are accompanied
by high certainty scores, while incorrect predictions yield
lower certainty scores. This pattern further reinforces the
well-calibrated nature of the certainty scores, as corrobo-
rated in Figure 5 in the main article and Figure 1.

GlaS Dataset: In this dataset, we explore instances with
complex structures. These structures pose a challenge for
the StarDist model, resulting in incorrect predictions asso-
ciated with high certainty scores (Figure 9c). This scenario
leads to an unsatisfactory calibration outcome, as evident
in Figure 2. This underscores the importance of evaluating
the estimated certainties for model reliability and informed
decision-making.
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Figure 7. Plot showing calibration errors as a function of the dropout layer location for the DSB2018 dataset using the Monte-Carlo Dropout
techniques. Panels (a) to (c) depict certainty estimates using the Pixel Approach, while panels (d) to (f) represent certainty estimates using
the Radial Approach. The observed randomness in calibration errors implies a lack of apparent correlation between the dropout layer’s
placement.
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Figure 8. Plot showing calibration errors as a function of the dropout layer location for the GlaS dataset using the Monte-Carlo Dropout
techniques. Panels (a) to (c) depict certainty estimates using the Pixel Approach, while panels (d) to (f) represent certainty estimates using
the Radial Approach. The observed randomness in calibration errors implies a lack of apparent correlation between the dropout layer’s
placement. No calibration error is observed when utilizing the Full U-Net 5f configuration with a dropout rate of drate = 0.8. This
outcome is due to the model’s inability to generate instance predictions, given that it is not optimized for this particular dataset.

(a) Bubble Dataset (b) DSB2018 Dataset (c) GlaS Dataset

Figure 9. Visualization of the uncertainty for the three datasets. The red polygons represent median cluster predictions, and the region
enclosed by the two yellow polygons delineates the spatial uncertainty peculiar to each specific instance. For (a) Bubble and (b) DSB2018
datasets, correct predictions are accompanied by high certainty scores, while incorrect predictions yield lower certainty scores. In the (c)
GlaS dataset, we observe incorrect predictions associated with high certainty scores.


