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Abstract

This is the supplementary material for the paper ti-
tled “LipAT: Beyond Style Transfer for Controllable Neu-
ral Simulation of Lipstick using Cosmetic Attributes”. The
outline of this document is as follows. Section 1 motivates
the solutions that allows lipstick virtual try-on using lipstick
attributes directly. Sections 2 and 3 provide more details
about the neural architectures in LipAT-LAM and LipAT-
LRM. Then, we discuss the datasets used in this work in
Section 4. Section 5 presents formal derivation and em-
pirical justifications for the novel metric – i.e., Patch-FID,
proposed in this work. We discuss more details about the se-
lected baselines and user study in Sections 6 and 7. We pro-
vide more quantitative results in Sections 8 and 9 to show
the superiority of LipAT, and discuss its limitations in Sec-
tion 10. The final section in this manuscript recaps the pre-
liminary on CIELAB colour space.

1. Beyond Lipstick Style Transfer

Neural Style Transfer (NST) [7, 12] aims to blend two
images – a content image and a style reference image,
such that the output image looks like the content image,
but with the style of the reference image. Motivated by
this literature, most recent neural lipstick application ap-
proaches [2, 6, 16, 22, 27] formulates the problem of lip-
stick application as a style transfer problem and exploits the
strengths of the NST models to transfer the appearance of
lipstick on a reference face image to a target face image. It
has been found that NST-based approaches could produce
realistic renderings without explicitly modelling facial and
scene-specific parameters as in Physics-Based Rendering
(PBR) techniques [9,11,21]. Nevertheless, there are several
limitations in NST-based approaches for lipstick virtual try
on (VTO).

First, due to the error in the decoupling lipstick as ‘style’,
they often end up transferring unwanted features like blem-

Figure 1. A few images produced using SSAT [22], a recently
proposed lipstick transferring approach using reference face im-
ages with lipstick.

ish, wrinkles and at times fake specularities ignoring the
target lighting condition. Fig. 1 presents a few examples
produced using SSAT [22], a recently proposed NST-based



makeup transferring technique. As can be seen in the first
two rows in Fig. 1, SSAT tends to transfer shadows and
highlights in the reference image to the target image while
completely ignoring the lighting profile of the target image.
To address this issue, LipAT applies lipstick to a target im-
age directly using the attributes of the given lipstick, instead
of relying on the reference image with the given lipstick.

Second, NST-based approaches mostly preserve the
colour of lipsticks – unable to preserve other attributes such
as finish types, as they cannot accurately disentangle these
other attributes from the colour of lipsticks by looking at
the reference image. Also, it is critical to exploit the 3D ge-
ometry of the image to accurately preserve attributes such
as finish type. LipAT addresses this challenge by having a
physics-aware module to incorporate lipstick attributes such
as finish type and opacity. LipAT is different from conven-
tional PBR approaches as LipAT does not require scene-
specific parameters (e.g., scene lighting) to be given, which
are unavailable for images in wild.

Third, NST-based approaches require a big database of
face images consisting of at least one image of a person
wearing each lipstick that we want to virtually try on. Since
such images are typically unavailable with most online lip-
stick products, NST-based approaches are unusable for a
large portion of any e-commerce website’s lipstick collec-
tion. Additionally, this limitation restricts the number of
training instances available to train NST-based approaches.
Most previous works adopt MT-dataset [13], which con-
sists of 1115 non-makeup images and 2719 makeup images.
Consequently, most NST-based approaches are not general-
ising well for unseen lipstick products and face images dur-
ing training (see the last three rows in Fig. 1). Since LipAT
applies lipstick using their attributes, LipAT is scalable and
also it generalises to diverse lipstick products including ex-
tremely rare lipstick products (e.g., lipstick products with
bluish colours). We present supporting examples for this
statement in the main paper.

2. Implementation Details of LipAT-LAM

LipAT-LAM includes a neural block, denoted as SC, to
correct specular highlights of a face image according to the
given roughness scores. Motivated by the conditional U-Net
architecture proposed in [15], we design SC as the architec-
ture shown in Fig. 2. This architecture consists of multiple
AdaIN blocks – adaptive instance normalization layer pro-
posed in [5] – using which the specular highlight update
process is conditioned on the given roughness score. Since
the output of SC should be well-aligned with the speculari-
ties of the input image, UNet-based architecture has been
selected to model SC as it includes skip connections to
transfer multi-scale knowledge from the input image to the
output image.

To train SC, we adopt Dtrain
real and Dtrain

synthetic (see Section 4

Figure 2. Design of the specular highlight correction (SC) module
in LipAT-LAM. Each Conv layer adapts 3⇥ 3 kernel.

for more details about these datasets) and Lpbr recon and
L� recon loss functions. To optimise, we use Adam optimiser
and its hyper-parameters as learning rate = 1e�4, decay
factor= 1e�5, �1 = 0,�2 = 0.9, epochs = 100, and batch
size = 32. We train our network using 8 GPUs of size 48GB
each.

3. Implementation Details of LipAT-LRM

LipAT-LRM module initially extracts multi-scale fea-
tures of I and Î

a using pretrained VGG-19 encoder using
ImageNet. Since most imperfections (e.g., unrealistic spec-
ularities, incorrect detection of lip) from LipAT-LRM can
be identified by checking the differences of finer-level fea-
tures (e.g., edges) in the lip regions of Îa and I , the interme-
diate features of VGG-19 encoder is a good choice due its
ability to extract from granular to coarser features of the in-
put image [20]. In particular, the features of the early layers
(l = 1, 2) of VGG-19 for I could be useful to refine Î

a as
the early layers emphasis finer-level features such as edges.

To generate the refined image of Îa, we adopt SPADE-
based architecture [17] as shown in Fig. 3. Unlike other
image generative neural blocks [15, 25], SPADE can effec-
tively control pixel-level and semantic-level refinements via
spatially adaptive normalisation, which makes it ideal for
region-specific image augmentation tasks as ours. Unlike
the conventional normalisation techniques, given a condi-
tion, SPADE produces the normalisation-related modula-



Figure 3. Design of LipAT-LRM

tion parameters as tensors with spatial dimensions to allow
more flexibility for the granular-level image updates accord-
ing to the given condition. SPADEResBlk in Fig. 3 denotes
the same SPADE residual block proposed in [17], which
consists of multiple SPADE blocks in cascade. Please
refer to [17] for more details about the architectures of
SPADEResBlk and SPADE.

LipAT-LRM consists of multiple SPADEResBlk in cas-
cade as shown in Fig. 3. However, the condition for each
block is different as they emphasise different levels of fea-
tures. The conditions are computed as a weighted addition
of the corresponding multiscale features of I and Î

a. As can
be seen, LipAT emphasises the features of I from the early
layers of VGG-19 more to exploit the finer-level knowledge
in I more to refine I .

To train R, we adopt the images with lipstick and without
lipstick in Dtrain

real (see Section 4 for more details about this
dataset). To optimise, we adopt RMSprop optimiser and its
hyper-parameters as learning rate = 2e�4, �1 = 0,�2 =
0.9, epochs = 200, and batch size = 32. We train our net-
work simultaneously using 8 GPUs of size 48GB each.

Figure 4. A few examples from Dtrain
real : (a) images without lip-

stick; and (b) image with lipstick

4. More Details on Datasets

4.1. Training Datasets

The training of LipAT involves two datasets: Dtrain
real and

Dtrain
synthetic.
Dtrain

real
- This dataset consists of 10,000 face images with-

out lipstick and 10,000 face images with lipstick from the
CelebA-HQ dataset [10]. CelebA-HQ provides annotations
under an attribute called wearing lipstick, which is 1 if the
corresponding face image is wearing lipstick, 0 otherwise.
The aforementioned two subsets of images are compiled
with the help of this attribute.

Most previous lipstick simulation approaches [13,16,22,
27] are trained using MT-Dataset [13], which consists of
1115 non-makeup images and 2719 makeup images. Due
to the small size of this dataset, most of the models trained
using this dataset perform poorly for new face images as
shown in Fig. 1. We aim to address this issue by having a
large face-image dataset as the primary training dataset in
LipAT, which gives better coverage of face images with re-
spect to age, gender and scene lighting (see Fig. 4). During
training, we adopt the images without lipstick in Dtrain

real to
learn the neural components in both modules of LipAT. The
images with lipstick are only used to serve real images to
optimize Ladv.

Additionally, Dtrain
real consists of 10,000 lipstick attribute

vectors as LipAT can be directly trained using attribute vec-
tors, unlike other NST-based approaches. This distinctive
trait allows unlimited control over the distribution of lip-
stick attributes used to train LipAT, which is leveraged in
this work to improve the generalisability of LipAT. We fit a
Gaussian kernel density estimation (KDE) function in the
space of the lipstick attributes (RGB values of the base
colors and roughness scores) using publicly available in-
formation related to lipstick products gathered from online
sources. From these learned distribution, we observed that
lipstick products tend to have reddish colours. Also, the
matte lipstick products (roughness score around 0.7) are
dominant in the market. Sampling lipstick attribute vectors
for training according to such distribution allows LipAT to
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Figure 5. How the location of the spot light source in the PyVista
rendering environment has been altered to replicate 5 different
light directions for the images in Dtrain

synthetic.

generalise well for real-world lipstick products. However,
there are rare lipstick products (e.g., bluish colours) that
are well covered from the learned distribution. We empiri-
cally observed that most existing NST-based lipstick VTO
solutions perform poorly for such examples (see our main
paper for a few examples). To address this problem, we
sample 10,000 lipstick attribute vectors in Dtrain

real using the
pre-trained KDE and a uniform distribution alternatively to
produce a realistic set of lipstick attributes with extreme ex-
amples. We sampled the opacity attribute using a uniform
distribution in the range [0, 1].

Dtrain

synthetic
- This dataset is used to optimize Lpbr recon dur-

ing the learning of the specular highlight correction module
in LipAT. Dtrain

synthetic consists of 10,000 specular components
corresponding to 80 unique face images that are rendered
using PyVista physics-based rendering engine. We adopt
the following steps to produce Dtrain

synthetic.
For each face image, we produce its 3D mesh using

media-pipe1. The produced 3D mesh is used to render the
specular highlight components of the face image (i.e., re-
flection maps) using the metallic-roughness PBR workflow
in PyVista under 5 different light directions (see Fig. 5),
5 light intensity values {1, 2, 5, 7.5, 10} and 5 different
roughness scores {0.1, 0.3, 0.5, 0.7, 0.9}. Figure 6 shows
a few examples from Dtrain

synthetic under different variables of
the rendering environments. Having such a diverse dataset
makes the specular highlight correction module in LipAT-
LAM robust against the unseen values from the space of the
rendering parameters.

4.2. Test Datasets

The testing of LipAT involves following two datasets:
Dtest

up and Dtest
wp .

Dtest
up - We adopt this dataset to measure the realism of

the generated images using a novel variant of FID. Since

1https://google.github.io/mediapipe/solutions/face mesh.html

Figure 6. A few examples from Dtrain
synthetic under different variables

of the rendering environment.

FID [4] requires at least 2048 images to be meaningful, this
dataset consists of 2048 face images with lipstick and 2048
without lipstick from the CelebA-HQ dataset. There is no
overlapping images between Dtest

up and Dtrain
real . Additionally,

each image without lipstick in Dtest
up associates with a lipstick

attribute vectors – sampled as in Dtrain
real . To compute FID,

it requires a real dataset (Dreal) and a dataset consisting of
generated images Dgen

2. We adopt the image with lipstick in
Dtest

up as Dreal, and the generated images by applying lipsticks
to the images without lipstick in Dtest

up as Dgen.
Dtest

wp - To quantitatively evaluate the accuracy of the lip-
stick simulation approaches, it ideally requires paired im-
ages of subjects with and without lipstick. Such publicly
available datasets with enough images are unavailable. In
this work, we construct a paired dataset using the face im-
ages with lipstick in CelebA-HQ using a weak labelling ap-
proach. Our approach adopts the makeup removal module
proposed in [22], which can remove lipstick from an image
given another reference face image without lipstick. This
makeup removal module is unable to recover the lip at-
tributes (e.g., colour) of the target face, thus, it simulates
the lip attributes of the reference face image, which could
be from a different person (see Fig. 7).

To address this limitation, we extract the image pairs in
the CelebA-HQ dataset of the same person with and without
lipstick using the annotations (i.e., ‘user id’ and ‘wearing
lipstick’ attributes) provided in CelebA-HQ. For each such
pair, we adopt SSAT to remove the lipstick of the image
with lipstick using an image without lipstick of the same
person as the reference. Although the aforementioned ap-
proach considers the actual lip attributes when removing
lipstick, the results could be unrealistic in some instances
due to the differences in the lighting of the image pairs

2See section 5 for more details about this metric



Figure 7. Makeup removal results using SSAT [22]. The figure is
taken from [22]. The first row is three nonmakeup reference im-
ages and the left column is target face image. The makeup removal
results are displayed in the lower right corner

Figure 8. Each row shows an example from our weakly paired test
dataset – the columns from left to rights represent the reference
images without lipstick, target image with lipstick depicting the
same person as the reference, and the generated image with the
lipstick removed, respectively.

and imperfections in segmenting lips. By manually filter-
ing out such unrealistic images, we constructed a weakly
paired dataset consisting of 127 image pairs with and with-
out lipstick. A few examples from this dataset are shown in
Fig. 8.

To adapt Dtest
wp for our quantitative evaluation framework,

the images with lipstick in Dtest
wp should be annotated with

the corresponding lipstick attributes a. We adopt two data-
driven approaches to extract the colour and roughness score
attributes from the face images with lipstick.

To extract lipstick colour ac from face images with lip-
stick, we adopt the approach proposed [14]. In this ap-
proach, we first extract the pixels of the lip of an image us-
ing face segmentation masks from media-pipe and convert
the RGB values of the selected pixels to CIE-LAB colour
space (see Section 11 for more details). Then, we cluster

Figure 9. Extracted lipstick attributes a for a few examples in Dtest
wp .

a corresponding to each image is shown in the second row – each
a vector gives the base color, roughness score (0.1 for glossy and
0.7 for matte), and opacity from left to right.

the selected pixels based on their a and b dimensions in the
Lab values using K-Means into 5 clusters. Then, it returns
RGB value corresponding to the center of the largest cluster
as the colour of the lipstick product.

To extract roughness scores a
r, we first pre-trained

a ResNet model using the self-supervised appearance-
preserving contrastive loss proposed in [1] using the L di-
mension of the images in the MERL dataset. The MERL
dataset consists of images of various objects (e.g., spheres,
blobs) rendered using PBR under different material prop-
erties and different lighting environments. By pre-training
only using L dimension of the images, we aim to make the
image encoder robust against colour variations as colour in-
formation is not useful to predict the roughness of a sur-
face. The adopted triplet loss function aims to learn sim-
ilar representations for the images rendered using similar
material properties. Subsequently, we trained a two-layer
feed-forward neural network with ReLU activation to pre-
dict roughness using the features from the pre-trained im-
age encoder. To train this neural network, we adopt the
same dataset used to construct the lipstick attribute vectors
in Dtrain

real , which consists of public information related to the
finish types of real-world lipstick products. We observed
that this approach outperforms other conventional image
encoders (e.g., EfficientNet, ResNet, VGG-19) trained us-
ing ImageNet and statistical heuristic-based approaches.
This approach can predict the absolute roughness score
with an accuracy of 0.14, which is enough to differentiate
widely-known finish types (e.g., matte = 0.7, cream=0.3,
glossy=0.1).

By adopting the aforementioned approaches, we weakly
inferred a

c and a
r for the images with lipstick in Dtest

wp , and
assumed that ao = 0.8. Figure 9 shows the extracted at-
tributes for a few examples in Dtest

wp .

5. Patch-FID

In this work, we introduce Patch-FID, a novel variant of
FID that is suitable in cases where a small region of the im-
ages has been changed during the artificial augmentation –
e.g., lip region in a full face image. We have empirically
found that the conventional FID measure is insensitive for



such minor image augmentations. This section formally de-
fines the proposed metric and compares it with conventional
FID and a naive variant of FID using an example to show
the superiority of Patch-FID.

Limitation of FID. To evaluate the preservation of re-
alism of the generated images, most previous works adopt
Fréchet Inception Distance (FID) [4]. For given two im-
age datasets – the one consisting of real images Dreal and
the other consisting of generated images Dgen, FID metric
is formulated as the Wasserstein distance dW [24] between
the two Gaussian distributions estimated from Dreal and Dgen
as follows:

FID(Dreal,Dgen) = dW (Nreal,Ngen) (1)

In the conventional FID metric Nreal and Ngen are estimated
using the sets of image features – Freal and Fgen respec-
tively, from an intermediate layer of the pre-trained Incep-
tion model [23] as follows:

Freal = {
M

8k
avg(f l(I)[:, :, k])|8I 2 Dreal} (2)

Fgen = {
M

8k
avg(f l(I)[:, :, k])|8I 2 Dgen} (3)

where f
l : I ! RH⇥W⇥C is the activations from the l

th

layer of the pre-trained Inception model, which consists of
C number of channels of size H ⇥ W .

L
8k

avg(f l(I)[:, :

, k]) 2 RC denotes the concatenation of the average of fea-
tures in each channel. Since Freal and Fgen in Equations 2
and 3 treat the features corresponding to all the pixels in
face images equally, FID score becomes insensitive when
you are only updating a small region of real images to gen-
erate Dgen – e.g., lip region of a full face image.

Patch-FID. To address this limitation, we propose
Patch-FID, which estimates Freal and Fgen only using the
activations from the Inception model corresponding to the
updated regions in the images. The set of locations of such
activations P I of an image I is identified with the help of a
mask M

I for the lip region in I as follows:

P
I

k
= {(x, y)|f l(M I · I)[x, y, k] 6= f

l(M · I)[x, y, k]})}
(4)

where x 2 [0, H � 1], y 2 [0,W � 1] and M
 is a black

image that masked out the whole face images. Our approach
produces F. for an given image I just using the locations
captured using the Eq. 4 as follows:

F
I

.
=

M

8k

1

||P I

k
||

X

(x,y)2P
I
k

f
l(I)[x, y, k] (5)

Then, Patch-FID computes Freal and Fgen by computing
F

I

.
from Equation 5 using the images in Dreal and Dgen re-

spectively. Then, the final score is computed using Eq. 1.

Figure 10. The selected example for the case study – (a) image
without lipstick I; (b) image with lipstick Ia; and (c) the selected
spatial locations of the intermediate feature maps of I to compute
Patch-FID. The original feature maps are scaled to the scale of I
to produce this figure to compare spatial locations. If a spatial
location is frequently got selected across feature maps from differ-
ent channels to compute Patch-FID, the colour of that location is
pushed towards white in this figure.

Figure 11. Difference of the inception feature values of I and Ia

in Fig. 10 for each channel using different methods – (a) FID, (b)
Masked-FID and (c) Patch-FID. These metrics are different due
to their different strategies when pooling the spatial dimensions of
each channel

Our experiments reported in the main paper showed that
Patch-FID is more suitable and sensitive enough to evalu-
ate our task.

Case Study. Here we compare Patch-FID with two other
baselines using an example. As the baselines, we adopt con-
ventional FID metric and a naive variant of FID, denoted as
“Masked-FID”. Masked-FID masks out the other pixels ex-
cept for the lip region of the face images and computes FID
using the masked images. As an example, we adopt the im-



Method Wasserstein Distance
FID 0.0031

Masked-FID 0.0029
Patch-FID 0.4087

Table 1. Wasserstein Distance between I and Ia in Fig. 10 using
their Inception features with different metrics.

age in Fig. 10 (a). As can be seen in Fig. 10 (c), Patch-FID
only picks intermediate activations from Inception that are
corresponding to the lip region. In contrast, Masked-FID
and FID consider all the activations equally when comput-
ing the metrics. As a result, the intermediate channel val-
ues (after pooling spatial dimensions) for I and I

a in Fig-
ure 10 are similar when using Masked-FID and FID (see
Figures 11 (a) and (b)). Thus, Masked-FID and FID be-
come insensitive to the minor/ part-specific changes in the
images. This can be quantitatively verified using Table 1,
which reports a very small Inception-based Wasserstein dis-
tance values between I and I

a with Masked-FID and FID.
These results further verify the importance of a metric like
Patch-FID to measure realism in cases where a small re-
gion of the images has been changed during the artificial
augmentation. Since Patch-FID is application-agnostic and
FID is a special case of Patch-FID, it can be applied across
different applications to evaluate the preservation of realism
over FID.

6. Baselines

In this work, we compare the proposed with 8 baselines
that are categorised as: (1) PBR-based baselines; (2) NST-
based approaches; and (3) Hybrid approaches. Under PBR-
based approaches, we adopt three baselines:

• Colour-Transfer [18] – this baseline adopts the colour
transfer approach proposed in [18]. This baseline only
considers the base colour attribute when applying lip-
stick, and performs an operation similar to the diffuse
update in LipAT-LAM module. Thus, it does not pre-
serve other lipstick attributes such as finish type as it
is not explicitly updating the specular highlights of the
images.

• AR [21] – this is our implementation of [21]. Since
some of the parameters – e.g., � values in gamma
transformation, used in this work are manually tuned
for each image in the paper, we set them to consistent
values after tuning to make this baseline a fully auto-
mated solution for a fair comparison with our work and
the other baselines.

• LAM – this baseline only consists of the lipstick appli-
cation module (LAM) proposed in our framework. The
comparison between this baseline and our full model
allows identifying the contribution from LRM, the sec-

Figure 12. A few examples of swatch images rendered for different
lipstick attributes using PyVista PBR engine.

Figure 13. Overview of Swatch-SpMT neural baselines, which
transfers lipstick attributes via a swatch image rendered according
to the given lipstick attributes.

ond module in our pipeline.
Since almost all the existing NST-based approaches are un-
able to transfer lipstick using lipstick attributes, we modi-
fied SpMT [27], a recently proposed neural makeup trans-
fer approach, to create two neural-based baselines that can
transfer lipstick without requiring a full face image with the
reference lipstick:

• Swatch-SpMT - this baseline first represents the at-
tributes of lipsticks using swatch images, that was con-
structed using PBR (see Fig. 12). By providing the
lip area in the target image and the swatch image as
the corresponding regions to the non-parametric corre-
spondence estimation module proposed in SpMT [27],
we modified SpMT to transfer lipsticks using swatch
images that are rendered based on lipstick attributes.
Overview of the modified framework is shown in
Fig. 13. To train the model, we adopt the same ar-
chitecture and the same set of objective functions pro-
posed in SpMT [27] except its cosmetic loss. Since we
do not have the reference face image with lipstick in



Figure 14. Overview of Att-SpMT neural baselines, which applies
lipstick directly using lipstick attributes.

this setting, we adopt LipAT-LAM to generate pseudo
labels to compute the cosmetic loss as Lcos in LipAT.

• Att-SpMT - this baseline trains the SPADE decoder in
SpMT to transfer lipstick directly conditioning on the
attributes. We adopt the architecture proposed for mul-
timodal synthesis in [17], which maps the attributes
into a latent space using which the SPADE decoder
is conditioned on. The overview of this framework is
shown in Fig. 14. The architecture of SPADE decoder
is similar to the decoder in [27], and the attribute en-
coder is similar to the encoder proposed in [15].

Otherwise specified, we adopt the training hyper-
parameters proposed in the corresponding papers to train
the NST-based baselines.

As the hybrid approaches, we combine LAM with three
recently proposed neural lipstick transfer approaches: (1)
CPM [16]; (2) SSAT [22]; and (3) SpMT [27]. For each
of these baselines, we first adopt our LAM module to sim-
ulate the lipstick on the target image and then use it as the
reference image to transfer lipstick using the selected neu-
ral lipstick transfer approaches. We adopt the pre-trained
models of CPM, SSAT and SpMT available in their original
repositories to collect results using hybrid approaches.

7. More Details on User Studies

This work conducts 3 user studies to qualitatively evalu-
ate three aspects of the generated images – preservation of
realism, preservation of finish types and overall accuracy.
We conducted these user studies using Amazon Mechanical
Turk. For each question in the user studies, we assigned 5
annotators and aggregated their results to get the reported
results in the main paper. We adopt Fleiss’ kappa [3] to
measure the agreement between the annotators. We ob-
served substantial agreement between the annotators for all
three user studies – 0.71, 0.61, 0.65 Fleiss’ kappa scores
for User Studies 1, 2 and 3 respectively, which verifies the

Figure 15. Three examples from User Study 1 – Image 1 and Im-
age 2 in each example could be be real images with lipstick or
artificially altered images. The participants have to pick the image
with the most realistic lipstick application.

reliability of the conducted user studies.

7.1. User Study 1 - Preservation of Realism

In this study, participants have been shown two face im-
ages of the same person with the same lipstick for each
round. The images could be real images with lipstick or
artificially altered images by applying lipstick to real im-
ages using different methods as shown in Fig. 15. Then, the
participants have been asked to pick the image that gives the
most realistic application of lipstick. We also explicitly in-
structed participants to zoom in to the lip area of the images
when judging similar images.

This user study consists of 1270 questions covering a
balanced distribution between real images and the images
rendered using four techniques – AR, Swatch-SpMT, LAM
+ SpMT and LipAT. Finally, the percentages of the images
from different methods are picked as realistic are reported
as the results of this study.

7.2. User Study 2 - Preservation of Finish Type

This study evaluates how accurately each method can in-
corporate finish types into the rendered images. For each
round in this study, participants have been shown two artifi-
cially generated images of the same person with two lipstick
products that have same colour but different finish types
(i.e., glossy and matte) as shown in Fig. 16. Then, the par-
ticipants have been asked to select the image that simulates
the appearance of a glossy lipstick. From our preliminary
experiments, we observed that humans struggle to predict
the finish type of lipstick, even in real images, without hav-



Figure 16. Three examples from User Study 2 – Image 1 and Im-
age 2 are generated by applying two lipsticks with same color but
different finish type to the image in left.

Figure 17. A set of lip images with glossy and matte lipsticks

ing additional clues. To make the judgements easier and
accurate, we attached the corresponding face image with-
out lipstick to each question (see Fig. 16) and also provided
a set of examples for lips with glossy and matte lipsticks
along with each question as shown in Fig. 17.

This user study consists of 508 questions covering a bal-
anced distribution between the images rendered using four
techniques – AR, Swatch-SpMT, LAM + SpMT and LipAT.
Finally, the accuracy of picking the correct images with
glossy lipstick from each method is reported as the result
of this study.

7.3. User Study 3 - Overall Accuracy of Lipstick

Appearance

This study evaluates the overall correctness of different
methods. For each round, participants have been shown a
reference image with lipstick and a sequence of generated
images by artificially applying the lipstick on the reference
image to a different face image using lipstick attributes (see
Fig. 18).

This user study consists of 127 questions and the four
generated images in each question are rendered using four
techniques – AR, Swatch-SpMT, LAM + SpMT and LipAT.

Figure 18. Three examples from User Study 3. The participants
have to pick the image out of Images 1, 2, 3 and 4 that simulates
the appearence of the lipstick in the reference image.

Finally, the percentages of the images from different meth-
ods are picked as the most accurate images are reported as
the results of this study.

8. More Quantitative Results

To further evaluate the ability of LipAT to incorporate
finish types, Table 2 shows diversity between images gen-
erated by applying the same set of lipstick to the same set
of image, but with different finish types. As can be seen,
PBR-based solution and LipAT can produce significant di-
versity for different finish types compared, The same figures
are negligible for all NST-based approaches. Although the
diversity is not a good measure of the accuracy of lipstick
application, this experiment shows that the inability of NST-
based approaches to properly preserve finish types. We
present a few examples in Fig. 20, which also shows align-
ing results with the aforementioned statements. In Fig. 21,
we present a few LipAT’s results for face images with dark
skin tone to show that how LipAT generalises for different
skin tones.

Quantitative Metrics vs User Studies. Here, we anal-
yse the agreement of the results coming from user studies
and from our quantitative evaluation. As can be seen in
Figure 19, User Study 1 results align well with Patch-FID,
which further verifies the suitability of the proposed novel
variant of FID to measure realism, particularly compared to
the conventional FID score. User study 2 focuses on pre-
serving finish type. We can observe that SSIM is a suitable
metric in this aspect to capture human perception of finish
types.

Additionally, we can see that none of the quantitative
metrics alone can produce aligning results with User Study
3. This could be because User Study 3 focuses on the over-
all correction of lipstick application, which should jointly
consider both realism and attribute preservation. Thus, we
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Figure 19. Analysis of the agreement between the user studies and different quantitative metrics. The standardised results from metrics
and user studies are used for the plots. The results show that Patch-FID and SSIM metrics are well aligned with User Study 1 and User
Study 2 results respectively.

Method
Type

Method SSIM (#) L1 (") Patch-FID (") FID (")

PBR
Colour-Transfer [18] 1 0.0000 0.0010 0.0002
AR [21] 0.8766 0.0026 4.8238 0.0101
LAM 0.8651 0.0029 4.9184 0.0117

NST Swatch-SpMT 0.9978 0.0003 0.0527 0.0019
Att-SpMT 0.9894 0.0009 0.0794 0.005

Hybrid

LAM + CPM [16] 0.9963 0.0004 0.0851 0.0024
LAM + SSAT [22] 0.9951 0.0006 0.0910 0.0037
LAM + SpMT [27] 0.9958 0.0005 0.0891 0.0032
Our Approach 0.8801 0.0023 4.8380 0.0098

Table 2. Diversity analysis of the generated images using different
finish types. For this analysis, we rendered two datasets using each
method by applying the same color lipsticks for the images in Dtest

wp
with two different finish types – glossy and matte. The reported
figures are computed using the corresponding images with glossy
and matte finishes in the constructed datasets.

produce a new metric as ↵1 · SSIM + ↵2 · Patch-FID by
combining the most suitable metric for measuring realism
and attribute preservation. We then attempted to find ↵1

and ↵2 here such that this new metric maximises the agree-
ment with the User Study 3 results. As shown in Fig. 22,
we observed that this new metric is able to produce a better
alignment – 0.89 R

2 value compared to the 0.86 and 0.74
R

2 values getting from SSIM and Patch-FID alone – with
the User Study 3 results. These results further show the
suitability of the proposed quantitative evaluation frame-
work (i.e., the selected set of metrics and the weakly paired
dataset) for evaluating different aspects of lipstick simula-
tion approaches while agreeing to human perception.

9. Ablation Study

Since multiple loss functions are adopted to train the
neural components in LipAT-LAM and LipAT-LRM, here
we perform an ablation study to show the positive contribu-
tion of those loss functions.

Table 3 shows the importance of Lpbr-recon and L�-recon

Method SSIM (") Patch-FID (#)

LipAT-LAM 0.799 23.2

LipAT-LAM w/o Lpbr-recon 0.793 25.7
LipAT-LAM w/o L�-recon 0.770 23.1

Table 3. Ablation study of LipAT-LAM

Method SSIM (") Patch-FID (#)

LipAT 0.797 20.2

LipAT w/o Lcos 0.678 21.3
LipAT w/o Lref 0.791 22.9
LipAT w/o Ladv 0.794 21.8

Table 4. Ablation study of LipAT-LRM

loss terms in the specular highlight correction module in
LipAT-LAM. As can be seen, both loss terms are positively
contributed towards the final performance. In particular, we
observe that the model is not generalising well for wild im-
ages without L�-recon, and not accurately incorporate rough-
ness without Lpbr-recon. Please see Fig. 5 in the main paper
for examples.

Similarly, Table 4 shows that three loss terms used in
LipAT-LRM have a positive impact. We empirically ob-
served that each loss term plays a unique role: Lcos is im-
portant to preserve colour, Lref is important to preserve fin-
ish types accurately, Ladv is important to preserve realism.
Overall, this ablation study quantitatively verifies the im-
portance of different components in LipAT, and the impor-
tance of how they are trained.

10. LipAT’s Limitations

One of the limitations of LipAT is its reliance on the ac-
curacy of the lip segmentation model. While LipAT can cor-
rect minor discrepancies between the predicted mask and
the actual lip region, it fails to apply lipstick in scenarios
where the lip segmentation technique is unable to detect the
lip region in certain images (e.g., side face images and face



Figure 20. More results using a PBR technique (LAM), NST-based technique (LAM + SpMT) and LipAT. Each row shows the results
generated by applying two lipsticks with the same colour, but different finish types.



Figure 21. LipAT’s results for face images with dark skin tones

Figure 22. Coefficient of determination values for the regression
task of predicting User Study 3 results using different combina-
tions of SSIM and Patch-FID. In this analysis, independent vari-
able is defined as ↵1 ⇤ SSIM + ↵2 ⇤ Patch-FID. All the variables
– User Study 3 results, Patch-FID scores, SSIM scores, were stan-
dardised to the range [0, 1] prior using for the regression task.

Figure 23. A few failure cases of the selected neural lip parser [8]

images with obscured lip region as shown in Fig. 23). To
prevent these failures, users can be advised to avoid captur-
ing such cases when testing LipAT in real-world settings.
Additionally, handling these failure cases could be achieved
by adopting a more dense and robust face landmark detec-
tion technique, considering that this research domain is ac-
tive and continuously evolving [26].

Another limitation is that LipAT alone cannot accurately
apply lipstick to face images that are already wearing lip-
stick. Previous works [2, 19] attempted to address this is-
sue by assuming lipstick removal as another form of lip-
stick application, thus, adopt similar neural networks and
features in the lip region for both lipstick application and
removal. Although combining LipAT with an automated
lipstick removal approach could enhance its scalability for
face images with lipstick (see Fig. 24 for a few examples
from such an approach), our efforts in constructing Dtest

wp

revealed that such existing makeup removal approaches can
produce unrealistic results (refer to Section 4 for more de-

Real Face Images 
with Lipstick

After Removing 
Lipstick using 

SSAT

After Reapplying 
Lipstick using LipAT 

with Matte Finish

After Reapplying 
Lipstick using LipAT 

with Glossy Finish

Figure 24. Lipstick simulation results on face images already
wearing lipstick by combining LipAT with SSAT [22]. Please see
how Dtest

wp is constructed in Section 4 for more details how SSAT
can be used for lipstick removal.

tails). This is primarily due to the complexity and chal-
lenges involved in lipstick removal as it lacks the necessary
information to accurately determine the actual lip color of a
person when looking at an image of their face with lipstick
applied. Therefore, further research efforts are necessary to
develop improved lipstick removal techniques, taking into
account additional attributes of a face image such as the skin
tone of other regions.

11. Preliminaries on CIELAB Colour Space

CIELAB is a device-independent color space that was
designed to be a perceptually uniform space, where a given
numerical change corresponds to a similar perceived change
in color. Thus, CIELAB color space is useful for predicting
small differences in color. CIELAB consists of three dimen-
sions (L, a, b) to represent each color. L defines the light-
ness value, which is black at 0 and white at 100. The a and
b dimensions represent the relative position of a color with
respect to the green–red and blue-yellow opponent colors
respectively, which range from -1 to 1. For example, having
a negative number for an axis means the color is closer to
green and a positive number means a color is closer to red.
The conversions between RGB and CIELAB color spaces
are done via CIEXYZ color space. Please refer to here for
the detailed formulas for the conversions.
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