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Figure 1. We introduce a method for debugging model failures by discovering “visually similar” images from the web. Left: sample
images on which 20 ImageNet trained models with near state-of-the-art accuracy make incorrect predictions (label below each image). Our
proposed framework can fix such failure modes. Right: “visually similar” images from the web.

Abstract

Deep neural networks can be unreliable in the real world
when the training set does not adequately cover all the set-
tings where they are deployed. Focusing on image classi-
fication, we consider the setting where we have an error
distribution E representing a deployment scenario where
the model fails. We have access to a small set of samples
Esample from E and it can be expensive to obtain additional
samples. In the traditional model development framework,
mitigating failures of the model in E can be challenging
and is often done in an ad hoc manner. In this paper, we
propose a general methodology for model debugging that
can systemically improve model performance on E while
maintaining its performance on the original test set. Our
key assumption is that we have access to a large pool of
weakly (noisily) labeled data F . However, naively adding
F to the training would hurt model performance due to
the large extent of label noise. Our Data-Centric Debug-
ging (DCD) framework carefully creates a debug-train set
by selecting images from F that are visually similar to the
images in Esample. To do this, we use the ℓ2 distance in
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the feature space (penultimate layer activations) of various
models including ResNet, Robust ResNet and DINO where
we observe DINO ViTs are significantly better at discover-
ing similar images compared to Resnets. Compared to the
baselines that maintain model performance on the test set,
we achieve significantly (+9.45%) improved results on the
debug-heldout sets.

1. Introduction
As machine learning systems are increasingly being de-

ployed in the real world, understanding and mitigating their
failure modes becomes critical to ensure that models work
reliably in different deployment settings. For example, in
medical applications, it is common to train a model using
data from a few hospitals, and then deploy it more broadly
to hospitals outside the training set [86]. In such cases,
we may want to identify the hospital systems on which the
model fails and feed more training data from those systems
into the model to improve its performance.

Most of the prior works in the literature focus on mitigat-
ing a small set of failure modes identified by a human-in-
the-loop [45, 60]. This can involve collecting new datasets
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Figure 2. Our framework (Data-Centric Debugging) for model debugging. We want to improve model performance on an error distribution
E (while maintaining accuracy on the test sets) using Esample (from E) and a weakly labeled dataset F . We divide the set Esample into two
disjoint sets: Eseed and Eheldout. Using the samples in Eseed, we want to add several “visually similar” images (selected from F) to the
training set, such that the model performance improves on Eheldout.

with objects in uncommon settings [4, 27–29, 33] (e.g. frog
in snow, ship indoors) which can be time consuming and
expensive. Moreover, in several cases, humans might not
be adequately aware of the undesirable failure modes and
even if they are, collecting large number of images in the
desired deployment scenarios might not be feasible.

In this work, we focus on the image classification prob-
lem X → Y where the goal is to predict the ground truth
label y ∈ Y for input x ∈ X . In the traditional model de-
velopment framework, we have a training set, a validation
set and a test set. The training set is used to train the model,
the validation set is used to evaluate and improve the model
performance during development and the test set is used to
report a final metric for the model performance.

In this setting, we consider an error distribution E repre-
senting a deployment scenario where a trained model fails
i.e. the model makes incorrect predictions on every sample
from E . We have access to a small set of images Esample

from E and it is prohibitively expensive to obtain more sam-
ples from E . Our goal is to improve model performance on
E while maintaining performance on the existing test set(s).
One naive approach could be to add Esample to the training
set. However, the model might overfit to Esample and fail
to generalize to novel samples from E . Thus, the traditional
development framework can be ineffective when sampling
a large amount of data from E is infeasible.

In this work, we propose a new formulation where in ad-

dition to the training data and Esample, we have access to a
large weakly-labeled (i.e., very noisily labeled) pool of im-
ages denoted by F . Here, F could be obtained from Flickr,
Commoncrawl [1] or any suitable data source. We collect
F using Flickr search (Section 3.2) and carry out a filtration
step to ensure that the images in F are “significantly differ-
ent” from the test set (Section 3.3). Because of the noisy
labeling, we find that naively adding the complete set F to
the training set can hurt model performance. For example,
we observe −13.67% drop in accuracy (Table 3). Thus, we
want to select a few samples from F without human super-
vision to improve model performance on E .

Intuitively, by selecting several images from F that are
“visually similar” to the images in Esample, we would ex-
pect a broader coverage of E resulting in improved model
performance compared to say, only adding Esample. How-
ever, because F can be large, identifying such similar im-
ages can be difficult. Moreover, even if we discover the sim-
ilar images, we may achieve improved results on Esample

due to some patterns specific to the Esample images. For
example, an image in Esample contains some pattern that is
similar to the patterns of some different class and similar-
ity matching may discover images from the other class. As
a result, the model may achieve improvements on Esample

and still fail to generalize to new samples from E . Thus, to
ensure that a model revision improves performance over the
distribution E as opposed to simply the observed instances
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Accuracy on different sets

incorrectly classified subset of 160 classes all 1000 classes
Seed Heldout MFreq Compl. INet MFreq Compl. INet

original 0% 0% 35.56% 56.89% 62.89% 63.70% 76.12% 76.47%

semi supervised 16.78% 21.97% 39.62% 56.29% 51.22% 61.30% 72.73% 75.25%

Complete (F) 18.53% 23.09% 37.56% 53.84% 49.22% 61.70% 72.93% 75.07%

Random (F) 16.78% 20.17% 41.56% 58.81% 63.91% 63.77% 75.21% 76.37%

DCD-DINO 36.28% 29.62% 54.06% 63.85% 64.62% 65.28% 76.42% 76.54%

Table 1. Results using DINO ViT-S/8 in our framework. “INet” denotes ImageNet test set, “MFreq” denotes the ImageNet-V2 [56]
MatchedFrequency set, “Compl.” (Complement) denotes the set of all ImageNet-V2 images excluding “MFreq”.

Esample, a framework for model debugging is required.
To address these challenges, we introduce Data-Centric

Debugging (DCD), illustrated in Figure 2: a framework for
targeted image retrieval to mitigate failure modes of deep
models and faithfully assess model performance on the er-
ror distribution. To retrieve visually similar images, we use
the ℓ2 distance in the feature space (penultimate layer ac-
tivations) of a deep network. To faithfully evaluate model
performance, we divide the set Esample into two disjoint sets
namely, Eseed and Eheldout. We refer to them as debug-seed
set and debug-heldout sets respectively. We want to use the
set Eseed for discovering visually similar images such that
the model performance improves on Eheldout. That is, we
only use Eseed (not Eheldout) for visual similarity match-
ing and evaluate model performance on Eheldout. Because
Eheldout is disjoint from Eseed but from the same distribu-
tion E , an improved performance would suggest that the
model is not overfitting to the images in Eseed and can gen-
eralize to novel samples from E . Thus, model performance
on Eheldout is a more faithful evaluation metric for E .

We apply our proposed framework on the ImageNet [16]
classification task. We first select 160 ImageNet classes
on which 20 highly accurate ImageNet trained models
achieve low accuracy (details in Appendix A). From these
classes, we select the incorrectly classified samples from
the ImageNet-V2 dataset as the Esample set. Next, we di-
vide Esample into the Eseed and Eheldout sets (Section 3.4).
For an image x ∈ Eseed with label i, we can either select
visually similar images from the subset of F with weak la-
bel i (denoted by F(i)) or from the complete set F thereby
discarding the weak labels. In the latter case, we can assign
the label i to selected images. We find that selecting from
the complete set often leads to images that are similar to x,
but from a different class, thereby contaminating the dataset
with wrongly labeled images. Thus, we select similar im-
ages from the subset F(i) (examples in Appendix J).

In Section 4, we experiment with several different mod-

els for extracting image embeddings for visual similarity
matching namely, Standard Resnet-50, Robust Resnet-50,
DINO ViT-S/8 and DINO ViT-S/16 [10]. Our experiments
(Table 3) suggest that DINO models are significantly better
at discovering visually similar images compared to Resnets.

In Table 1, we compare our method against the “original”
model trained using standard ImageNet, “semi-supervised”
model trained via semi-supervised learning (on F), “Ran-
dom (F)”: trained using randomly selected images from
subsetsF(i), “Complete (F)”: trained on the fullF dataset
(with class re-weighting so that weights assigned to classes
are same as in ImageNet). For our results (“DCD-DINO”),
we used DINO ViT S/8 for similarity matching. We ob-
serve that our method achieves the best results on Heldout
set: (29.62%), significantly outperforming semi-supervised
(19.47%), complete (23.07%) and random (20.17%). We
also achieve the best results on several 160 class ImageNet
subsets. Moreover, “Complete (F)” results in large accu-
racy drop on INet (160 classes) from 62.89% to 49.22% (-
13.67%) whereas with our method, the accuracy improves
to 64.62% (+1.73%). These results highlight that our pro-
posed framework is effective in mitigating model failures.

In summary, we make the following contributions:

1. We proposed DCD, a framework for mitigating
model failures via data-centric debugging. In
contrast to the traditional model development us-
ing training/validation/test splits, we construct debug
seed/train/heldout datasets to systematically improve
failure modes of the model.

2. Using the ℓ2 distance in the penultimate layer for retriev-
ing visually similar images, we conduct experiments us-
ing different models for extracting penultimate layer fea-
tures. We find that DINO models are significantly bet-
ter at discovering similar images compared to Resnet-50
models (Results in Figure 3).



3. Using our framework, we achieve 29.62% accuracy
on the debug-heldout set, compared to 0%, 21.97%,
23.09%, 20.17% for the baselines. We also achieve sig-
nificant improvements: 63.85% vs 58.81% for runner-up
(+5.04%) on ImageNet-V2 subset (“Compl.” in Table 1).

2. Notation

Let setA consist of (image, label) pairs: (x, y) ∈ A, and
A(i) denote the images with label i:

A(i) = {x : (x, i) ∈ A}

Given two sets: A and B, we use: (A − B)(i) to denote
A(i)− B(i). We use |A| to denote the cardinality (number
of elements) ofA, [n] to denote the set: [0, 1, . . . , n−1] and
∥z∥ for the l2 norm of vector z. For image x, Φ(x) denotes
the penultimate layer output of the model Φ. We use Y to
denote the set of all 1000 ImageNet classes.

3. Framework for model debugging

Consider the image classification problem X → Y
where we want to predict the ground truth label y ∈ Y for
input x ∈ X . Given a trained model, we have an error
distribution E of incorrectly classified images i.e. every im-
age sampled from E is misclassified by the model. We have
access to a set of samples Esample from E and it is very
expensive to draw more samples. Here, E represents the
deployment scenario where we we want to improve model
performance. For example, we may be interested in images
with people of color, specific gender or distribution shift
(e.g., people wearing masks during COVID-19), etc.

We also assume that we have access to a large pool of
weakly labeled images (noisy labels) denoted by F . Here,
F can be obtained using any suitable data source depending
on the problem. Using F , we want to improve model per-
formance on E while maintaining on the desired test set(s).

One naive method could be to add the complete set F
to the training set. However, because the labels in F can
be very noisy, this can reduce the quality of the dataset and
hurt model performance. Thus, we want to improve perfor-
mance on E by selecting new training images from F while
maintaining model performance on the desired test set(s).

Intuitively, we would expect an improved performance
on E by selecting several images from F that are “visu-
ally similar” to Esample images. However, identifying sim-
ilar images from a large dataset can be difficult. Moreover,
even if we successfully discover such images, we may see
an improved performance on Esample due to some patterns
specific to Esample images that may fail to generalize to
new images from E . For example, the pattern in one im-
age may be a strong match for another image from different
class. Thus, we want an evaluation procedure that reflects

Figure 3. Class and context retention for nearest-neigbhor retrieval
on the FOCUS dataset, using different models Φ. DINO ViTs are
superior for both class and context retention.

Figure 4. Example where nearest neighbor (k = 3) search on FO-
CUS dataset using DINO ViT-S/8 features retains context, while
Standard Resnet-50 does so in 1/3 cases.

the true model performance on E because the performance
on Esample may be an overestimate of the same.

To address these challenges, we introduce Data-Centric
Debugging (DCD), illustrated in Figure 2: a framework for
targeted image retrieval to mitigate failure modes of deep
models and faithfully assess model performance on the er-
ror distribution. In the next subsections, we discuss the
building blocks of our framework.

3.1. Models for visual similarity matching

From the set F , we would like to identify images that
are “visually similar” to the images in Esample and add to
the training set as we would expect such images to be most
effective for improving model performance. In this work,
we use the penultimate layer output of a deep model Φ as
the image embedding for visual similarity matching. Given
two images x, z, we use the squared l2 distance (∥Φ(x) −
Φ(z)∥2) in this space as the visual similarity distance to
discover similar images [10, 22, 57, 59, 74, 76, 77, 89, 90].

We experiment with four pretrained models Φ for com-
puting these distances: Standard Resnet-50, Robust Resnet-
50, DINO ViT-S/16 and DINO ViT-S/8 [10] (Appendix C).



To better inform the choice of the model Φ, we conduct an
experiment on the FOCUS dataset [33]. FOCUS consists
of common objects in various settings, leading to two labels
per sample: one label denoting class (bird, plane, etc), and
the other denoting context (snow, night, indoors, etc). We
obtain features for every sample in FOCUS using various
backbones, and then obtain k = 25 nearest neighbors per
sample in the feature space of each model. We then com-
pute the percent of neighbors amongst the top k′ ≤ k that
retain (i) object class and (ii) image context.

Figure 3 visualizes the results. We observe that the reten-
tion rate for class is far higher than for context. Retaining
both class and context is important for our use case as the
set Esample may consist of instances of a class in an uncom-
mon context and we would want to select more examples of
that object in that same context. We find that DINO vision
transformers are superior in both class and context retention
compared to Resnet models. Specifically, DINO ViT-S/8
achieves the best class and context retention. This unique
property makes DINO transformers a prime candidate for
visual similarity computation and targeted image retrieval.
In Figure 4, we show an example where the 3 nearest neigh-
bors using DINO ViT-S/8 features retain context, but Stan-
dard Resnet-50 features do not.

3.2. Collecting large pool of images from the web

We want to collect a large pool of images from the web
and identify images that are visually similar to the images
in Esample. Since collecting a large number of images for
all 1000 ImageNet classes can be time consuming, we first
select 160 classes (denoted by T ) on which 20 highly ac-
curate ImageNet trained models achieve low accuracy (see
Appendix A). For each class i ∈ T , we obtain their synset
(set of synonyms). For example, in the synset {‘junco’,
‘snowbird’}, ‘junco’ and ‘snowbird’ are synonyms. For
each synonym in the synset, we perform a Flickr search and
collect the URLs of the first 30,000 images in the search re-
sults. After collecting URLs for all classes in T , we remove
URLs that were common across multiple classes. This re-
sults in a weakly labeled dataset (denoted by F̄) consist-
ing of 952,951 images across 160 classes. Note that F̄ is
weakly labeled because all images in the search results may
not contain the relevant object in the search term.

3.3. Removing overlap with the test sets

Since the model performance on test set can be trivially
improved by adding images from the test set to the training
set, it is critically important to ensure that the new images
added to the training set are “sufficiently different” from the
test set images. To this end, we introduce a filtration step
based on the criteria that the newly added images should
be at least as different from test set images as they are be-
tween the ImageNet train/test sets (see Appendix D). Thus

Dataset Class subset # of images

Seed 160 classes (T ) 1,031
Heldout 719

MFreq 160 classes (T ) 1,600
1000 classes (Y) 10,000

Comple-
ment

160 classes (T ) 1,668
1000 classes (Y) 10,683

Table 2. Dataset sizes.

for each class i ∈ T , we first compute a threshold visual
similarity distance τ(i) using the ImageNet dataset.

Let U denote the union of all test sets that we want to
evaluate our model on. This includes the seed set, heldout
set, and all other test sets. We select the images x ∈ F̄(i)
that have visual similarity distance > τ(i), from all images
z ∈ U(i). The new dataset constructed by selecting such
images is denoted by F . We add images from F to the
training set (instead of F̄) to prevent images identical (or
highly similar) to the test set images from being selected.
We note that similar overlap removal procedures have been
used in several prior works [37, 42, 52, 55].

3.4. Debug-seed and -heldout sets

We divide the set Esample into two disjoint sets: Eseed
and Eheldout. Using Eseed, we want to add images fromF to
the training set that result in improved model performance
on Eheldout. We stress that Eheldout is never used for image
retrieval. The intuition here is that since we are only using
Eseed to collect new images and Eheldout is from the same
distribution E , an improved performance would suggest that
the model is learning relevant concepts (not overfitting to
Eseed). This leads to the following definitions:

• Debug-Seed Set: set of images (Eseed) sampled from E
used to collect new training data to improve performance

• Debug-Heldout Set: set of images (Eheldout) sampled
from E disjoint from Eseed that is used to evaluate perfor-
mance of model trained on images collected using Eseed.

We remark that this is similar to the validation/test setup
in model development. We construct the debug-seed and
heldout sets by selecting images incorrectly classified by a
Standard Resnet-50. We use the 160 class subset (T ) for
which we obtained Flickr images (Section 3.2).

We use the ImageNet-V2 dataset [56] to sample the
seed Eseed and heldout Eheldout sets. ImageNet-V2 con-
sists of three (non-disjoint) sets namely, (a) MatchedFre-
quency, (b) Threshold0.7, (c) TopImages. We observe that
models achieve the lowest accuracy on MatchedFrequency



(or “MFreq”) set [56]. Thus, we use the incorrectly clas-
sified images from this set to construct the set Eseed. This
ensures that Eseed has a large size. We want the heldout set
Eheldout to be disjoint from Eseed. Thus, we take the union
of all the three sets and remove the “MFreq” images from
the union to define the “Complement” set.

We construct the seed set (Eseed) by selecting images
from “MFreq” with labels in T that were incorrectly classi-
fied by the Resnet-50 model. For the heldout set (Eheldout),
we select the incorrectly classified images from the “Com-
plement” set, again from the 160 classes in T . The sizes of
these datasets are in Table 2.

3.5. Debug-train and -validation sets

We use the images in Eseed to select new images from F
and add them to the training set. We may also want to vali-
date that upon training the model on these new images, the
performance improves on images visually similar to Eseed.
Thus, we define the debug-train and debug-validation sets:

• Debug-Train Set: set of images selected from F and
added to the training set to improve model performance.

• Debug-Validation (De-Val) Set: set of images selected
fromF (and disjoint from debug-train set) to validate that
the model performance improves on images visually sim-
ilar to the images in Eseed.

For each image x ∈ Eseed(i), the de-val should contain
a set of few (say k) images visually similar to x with label
i. We may construct this set by selecting k images with the
smallest visual similarity distance to x from F(i). How-
ever, for two images x, z ∈ Eseed(i), the sets of k images
may overlap. Thus, some seed images may have fewer (than
k) images included and not be well represented. To address
this limitation, we use an algorithm (in Appendix E) that
removes the selected images on the fly and avoids overlaps.
The resulting de-val set is denoted by V . We construct the
debug-train set using a similar procedure. Because we want
debug-train set to be disjoint from the debug-val set (V), we
find visually similar images from the subset: (F − V)(i).
The procedure is same as the de-val set except that we use:
(F−V) instead ofF . We first construct the de-val set using
k = 4 followed by the debug-train set using k = 46.

4. Experiments
In this Section, we discuss results using the seed and

heldout sets (discussed in Section 3.4). We evaluate our
proposed method on two criteria: the improvement in accu-
racy on the heldout-debug set and the accuracy drop on the
ImageNet, MFreq and Complement test sets. For each of
these test sets, we evaluate on both 160 class subset and all
1000 classes. We use the Resnet-50 architecture for train-
ing all models. Each model was trained for 90 epochs over

eight GPUs (RTX 2080 Ti). We use the composer library
for training all models to reduce training time [72].

4.1. Baseline models

We compare against several baseline models:

• Original: trained on the ImageNet training set (no addi-
tional training images are added)

• Semi-supervised: two different models trained using
semi-supervised learning. One trained using YFCC-
100M [73] as described in [81], other using theF dataset.

• Semi-weakly supervised: trained using IG-1B dataset
[42] again using [81]. The key difference between semi-
supervised and semi-weakly supervised is that in the lat-
ter, model is pre-trained on weakly-supervised data using
social media hash tags.

• Finetuning: fine-tuned on the Eseed set starting from the
“original” model.

• Only seed: trained on ImageNet along with only the seed
set Eseed (no training images from F).

• Auto augment: again trained on ImageNet along with
only the seed set Eseed but using the Auto Augment data
augmentation strategy [15].

• Feat match: again trained on ImageNet along with the
seed set Eseed but using feature augmentation as in [39].

• Complete (F): trained using the complete dataset F of
size 952, 022 (Section 3.3). Since this leads to a dispro-
portionately large number of images from the 160 classes
(T ) inF , we assign weights (w(i)) to these classes so that
the total weight for each class is the same as in ImageNet:

∀ i ∈ T , w(i)× |Itrain(i) ∪ F(i)| = |Itrain(i)|

• Random (F): For each class i ∈ T , we randomly select
46× |Eseed(i)| images (without replacement) from F(i).
Note that this set has the same size as our debug-train
set. This ensures a fair comparison across models. From
Table 2, the dataset has size 1031× 46 = 47426.

4.2. Table details

In Table 3, we show results on different test sets namely,
MFreq: only the ImageNet-V2 MatchedFrequency set
Complement: all ImageNet-V2 images except Mfreq
INet: standard ImageNet test set.
Details for “MFreq” and “Complement” are in Section 3.4.

In “Accuracy on different sets”, we show the model accu-
racy on various subsets of the test sets. In “160 classes”, we
show the accuracy on images from classes in T and “1000
classes”: from all 1000 classes in ImageNet. In “incorrectly



Debug-Train
method

Accuracy on different sets

incorrectly classified subset of 160 classes all 1000 classes
Seed Heldout MFreq Compl. INet MFreq Compl. INet

original 0% 0% 35.56% 56.89% 62.89% 63.70% 76.12% 76.47%

semi-supervised (YFCC) 12.51% 19.47% 36.13% 54.08% 60.09% 63.65% 74.28% 74.44%

semi-supervised (F) 16.78% 21.97% 39.62% 56.29% 51.22% 61.30% 72.73% 75.25%

semi-weakly supervised 17.46% 24.20% 40.88% 58.51% 63.96% 66.99% 77.50% 77.18%
finetuning 32.61% 24.05% 47.55% 56.63% 59.66% 62.85% 71.46% 75.51%

only seed 44.42% 15.58% 59.31% 56.47% 63.78% 68.05% 76.28% 76.86%

auto augment 34.04% 17.80% 52.12% 56.65% 63.80% 67.56% 76.92% 76.79%

feat match 15.23% 21.00% 24.19% 33.75% 35.64%

Complete (F) 18.53% 23.09% 37.56% 53.84% 49.22% 61.70% 72.93% 75.07%

Random (F) 16.78% 20.17% 41.56% 58.81% 63.91% 63.77% 75.21% 76.37%

DCD-DINO (ViT-S/8) 36.28% 29.62% 54.06% 63.85% 64.62% 65.28% 76.42% 76.54%

DCD-DINO (ViT-S/16) 36.76% 26.98% 55.00% 62.83% 64.11% 65.69% 75.38% 76.41%

DCD-Resnet (Standard) 32.39% 28.09% 51.75% 63.31% 64.57% 65.62% 75.96% 76.70%

DCD-Resnet (Robust) 33.07% 26.84% 51.5% 62.29% 62.27% 65.04% 75.70% 76.50%

Table 3. Results comparing DCD variants. “INet” denotes the ImageNet test set, “MFreq” denotes the ImageNet-V2 [56] MatchedFre-
quency set, “Compl.” denotes the Complement set (all ImageNet-V2 images excluding “MFreq”).

(a) accuracy for 160 classes for DCD-DINO
(Y-axis) and Random (F) (X-axis) on seed

(b) accuracy for 160 classes for DCD-DINO
(Y-) and Random (F) (X-) on heldout

(c) heldout set accuracy for each class i ∈ T
(Y-axis) as |F(i)| increases (X-axis)

Figure 5. In (a) and (b), we plot DCD-DINO accuracy (Y-axis) and Random (F) (X-axis) for all 160 classes. The size of each dot is
proportional to the number of images in F for that class (|F(i)|) and dashed line represents Y = X . In (c), we plot the accuracy per class
on the heldout set as |F(i)| increases. We also show the corresponding linear regression lines.

classified”, accuracy on images (from 160 class subset) that
are incorrectly classified by the “original” model.

In the last four rows, “Debug-Train method” denotes the
model Φ used for computing visual similarity distances.
DCD-DINO (ViT-S/8 and ViT-S/16) denote the models
trained using DINO ViT-S/8 and ViT-S/16 features. DCD-
Resnet (Standard and Robust) denote the models trained us-
ing Standard and Robust Resnet-50 features.

4.3. Discussion

Adding the complete set: While one may believe that noisy
data is better than no data, we observe that naively adding
noisy data (F) has diminishing returns. In “Complete (F)”,
952,022 extra images are added while in “Random (F)”
only 47,426. Even though we add 20 × more images in
“Complete”, accuracy on seed, heldout are only marginally
better. In fact, under other metrics, such as “160 classes”
(INet), accuracy for “Complete (F)” is 49.22% signifi-



cantly below “original” 62.89% (−13.67%) and “Random
(F)” 63.91% (−14.69%). This suggests that naively adding
large amounts of noisy data can hurt model performance.
Comparing models: We want to compare the quality of
visual similarity matching using different models. We
observe that similarity matching using both DINO mod-
els achieves significantly higher accuracy on “Seed” com-
pared to using Resnet-50: DCD-DINO (ViT-S/8) achieves
36.28% compared to 33.07% for Robust Resnet-50. This
provides evidence that DINO models are better for similar-
ity matching. Similar trend is also observed for the Heldout
set. However, between Standard and Robust Resnet-50, the
results on “Seed” are comparable suggesting that adversar-
ial robustness is not critical for similarity matching.
Comparison with semi-(weakly) supervised methods:
We observe that DCD-DINO (ViT-S/8) significantly outper-
forms semi-supervised and semi-weakly supervised meth-
ods for both the incorrectly classified and subset of 160
classes benchmarks. The performance of semi-weakly su-
pervised methods on all 1000 classes is only marginally bet-
ter. Since the semi-weakly supervised model was trained
using 1 billion additional images spanning all 1000 classes
while DCD models are trained using 47426 additional im-
ages spanning only 160 classes, these results suggest that
using DCD for all 1000 ImageNet classes can further boost
model performance on all 1000 classes benchmarks.
Comparing Complete, Random and DCD: We observe
that DINO ViT-S/8 achieves significantly improved results
compared to both “Complete (F)” and “Random (F)”. On
“Heldout”, we achieve 29.62% compared to 23.09% for the
next best i.e. gain of 6.53%. On the “Compl.” set (160
classes), we achieve 63.85%: gain of 5.04% compared to
58.81% for the next best model. On the 1000 classes sets,
we achieve slightly improved results on all sets: 76.42% on
“Complement”, compared to 76.12% (+0.3%). Similarly on
INet, we achieve 76.54% similar to 76.47%. Model perfor-
mance is maintained on all test sets.
Comparing only seed and DCD: We observe that although
adding only the seed set and training from scratch (“only
seed”) achieves high accuracy on Seed (as expected when
training on the same data), DCD-DINO (ViT-S/8, ViT-S/16)
achieves significantly higher performance on Heldout and
Compl. sets (by a margin of at least 5%). DCD also outper-
forms other baselines such as “finetuning” “auto augment”,
“feat match” significantly. These results provide strong evi-
dence that adding images to the training set that are visually
similar to the seed set can significantly improve model per-
formance on failure mode distributions.
Accuracy on different classes: We now compare the seed
and heldout accuracy for different classes i ∈ T as |F(i)|
varies. In both Figures 5a and 5b, we observe that DCD-
DINO achieves better accuracy on most classes compar-
ing to Random (F) (as most points lie above the dashed

y=x line). Also, DCD-DINO achieves better accuracy for
classes with larger amount of data (larger red dots). In Fig-
ure 5c, we compare accuracy per class as |F(i)| increases
(x-axis) for four different models: DCD-Resnet (Standard
and Robust), DCD-DINO (ViT-S/8) and Random (F). We
see that as |F(i)| increases, we achieve better accuracy (ac-
cording to the linear regression lines) for all methods except
Random (F). For Random (F), there is a slight accuracy
reduction for large |F(i)|. Our results provide evidence
that by obtaining large amounts of weakly-labeled data and
adding selected images to the training sets, we can achieve
significantly improved results.
Possibility of insufficient/low quality Flickr results: We
emphasize that although the results presented in this work
use Flickr search for creating the pool F̄ , such a pool can
be obtained from any data source. For example: for patient
MRI scans, the data could be obtained offline from a net-
work of hospitals. Weak labels can be assigned based on the
patient information or top-k predictions of some pre-trained
model. Moreover, requirement of high quality training data
is central to all deep learning algorithms and reducing such
dependencies remains an active area of research.

5. Related work

Dataset Design and Data valuation: Previous works [7,
13,17,18,24–26,38,54,55] use gigantic amounts of training
data to achieve high performance. However, recent work
[49, 61, 82] suggests that adding small amounts of carefully
selected training data may be more effective for improving
model performance. Some recent works [21, 80, 84] focus
on data valuation and seek to quantify the contribution of an
individual datapoint to the overall model performance.
Debugging and Explainability: Existing works on ex-
plainability of deep networks focus on inspecting the de-
cisions for a single image [2, 5, 11, 12, 19, 23, 30–32, 36,
43, 44, 47, 48, 51, 53, 58, 62, 65, 68–71, 75, 83, 85, 87, 91, 92]
or identifying failure modes across a large set of images
[14, 40, 50, 67, 78, 79, 88]. Another class of works focus
on making edits to the model to modify its predictions
[9, 45, 60] or introducing datasets to stress test model per-
formance on images with the main objects in uncommon or
rare settings [4, 29, 33, 46, 66].
Visual Similarity metrics: Several visual similarity met-
rics have been proposed [10, 22, 57, 59, 74, 76, 77, 89, 90]
using the l2 distance between features of a deep network.
Semi-supervised and Active learning: Semi-supervised
methods [6, 8, 41, 61] aim to improve model’s performance
using unlabeled or weakly labeled data. Active learning
[3, 34, 35, 63, 64] identifies data subsets from a large unla-
beled corpus for annotation, often by humans, that can lead
to high performance gains.
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Appendix
A. Selecting 160 classes for model debugging

We first selected 30 models with different architectures from the timm library. From these 30 models, we selected 20
models that achieved highest accuracy on the ImageNet-V2 set. The 20 models were: swin base patch4 window7 224,
swin small patch4 window7 224, convit base, deit base patch16 224, convit small, swin tiny patch4 window7 224,
resnet50d, mixnet xl, seresnet50, deit small patch16 224, resnext50 32x4d, efficientnet b4, resnet50, efficientnet b3,
wide resnet101 2, efficientnet b0, vit base patch16 224, resnet34, mnasnet a1, vit small patch16 224.

ImageNet-V2 consists of 3 test sets namely: MatchedFrequency, TopImages and Threshold0.7. We used the MatchedFre-
quency version because models achieve the lowest accuracy on this set (making it suitable for debugging). Next, we selected
classes with at least 3 images on which all 20 selected models were inaccurate on the MatchedFrequency set.

This resulted in total 160 classes.

B. Set of models used in the multiple-model setting
We used the same models as in Section A except that the Resnet-50 model included was not from the timm library but

another Resnet-50 trained from scratch by us. We used the same Resnet-50 as the one used in the single-model setting as this
makes the comparison between multiple-model and single-model settings easier. This again resulted in total 20 models.

C. Models used for visual similarity matching
We experiment with four pretrained models Φ for computing these distances: Standard Resnet-50, Robust Resnet-50,

DINO ViT-S/16 and DINO ViT-S/8 [10]. Here, Standard Resnet-50 model is the original trained model we are trying to
debug. We use Robust Resnet-50 because adversarially robust models have the unique property that if you try to optimize
two visually different images to minimize the visual similarity distance between them (using the robust model as the feature
extractor), the resulting images look visually very similar. The same is not true for standard models as shown in [20]. This
suggests that robust models may be better suited for visual similarity matching and we investigate this in the paper. We
selected the DINO ViT-S/16 and ViT-S/8 models because the penultimate layer features for these models are known to be
good kNN classifiers [10] achieving 74.5% and 78.3% accuracy on ImageNet respectively.

D. Removing images “visually similar” to test-sets
Since the model performance on test set can be trivially improved by adding images from the test set to the training set,

it is critically important to ensure that the new images added to the training set are “sufficiently different” from the test set
images. To this end, we rely on the representation of a Robust Resnet-50 model Φr (for two images x, z, ∥Φr(x)−Φr(z)∥2
is the visual similarity metric). Using this metric, we argue that for each class, the newly added images should be at least as
different from test set images as they are between the ImageNet train/test sets.

Let Itrain and Itest denote the ImageNet train and test sets. Thus, for each label i ∈ T , we first compute a threshold
visual similarity distance τ(i) using ImageNet as follows:

τ(i) = min ∥Φr(x)− Φr(z)∥2

where x ∈ Itrain(i), z ∈ Itest(i)

For each class i, τ(i) captures the minimum visual distance that should exist between the train and test images for class i.
Let U denote the union of all test sets that we want to evaluate our model on. This includes the seed set, heldout set and every
test set on which we want to maintain model performance. We want to select the images x ∈ F(i) that have visual distance
> τ(i), from all images z ∈ U(i). To this end, we construct a new dataset F as follows:

F(i) = {x ∈ F̄(i) : min
z ∈ U(i)

∥Φr(x)− Φr(z)∥2 > τ(i)}

We use the Robust Resnet-50 model for removing similar images because for a standard model, using gradient based
adversarial attacks, it is possible to construct pairs of images that look exactly the same to the human eye, yet map to
different representations. However, for a robust model, such adversarial attacks lead to changes that are visible to the human
eye and the resulting pairs of images are visually different. Thus, even if ∥Φ(x)−Φ(z)∥2 is very large for a standard model,
x and z may still look identical to a human. This is further illustrated in Figure 6. Thus suggests that using a robust model
leads to a more reliable metric for removing images that are similar to some reference image.



(a) original image (b) standard model (c) robust model

Figure 6. (a) initial image (denoted by x). We solve z = argmaxz:∥z−x∥≤ρ ∥Φ(z) − Φ(x)∥2 using Φ as Standard Resnet-50 in (b) and
Robust Resnet-50 in (c). In (b), x and z look identical to a human eye. In (c), x and z are visually very different.

E. Algorithm for constructing debug-validation and debug-train sets
To avoid overlaps when selecting “visually similar” images per image, we use the below procedure:

• For each x ∈ Eseed(i), we initialize the set: N [x] = {}.

• For all pairs x ∈ Eseed(i), z ∈ F(i), we compute the distance ∥Φ(x)− Φ(z)∥2. This gives the matrix D.

• Let x∗, z∗ be the pair with the minimum distance in D. We add z∗ to N [x∗] and set D[:, z∗] = ∞ (this prevents z∗

from being selected again, thus no overlaps).

• If the number of elements in N [x∗] equals to k, we set D[x∗, :] = ∞ (this prevents x∗ from being selected again if
N [x∗] contains k elements).

• We repeat this procedure until ∀ x, N [x] is of size k.

This is equivalent to Algorithm 1 with Q = Eseed(i),W = F(i). The complete de-val set is given by:

V(i) = ∪x∈Eseed(i) N [x] (1)

Similarly, the debug-train procedure is constructed using the inputs Q = Eseed(i),W = (F − V)(i) to Algorithm 1.

Algorithm 1: Finding disjoint sets of similar images
Input: seed set: Q, web data: W , count: k
Output: N
for x ∈ Q do
N [x]← {}
for z ∈ W do

D[x, z]← ∥Φ(x)− Φ(z)∥2
end

end
while ∃ x : |N [x]| < k do

x, z = argminD
N [x]← N [x] ∪ z
D[:, z]←∞
if |N [x]| == k then

D[x, :]←∞
end

end



F. Results in the single-model setting
Results using fine-tuning: In Table 4, we observe that finetuning on the new data performs significantly worse compared
to training from scratch for both seed and heldout sets. Similarly the fine-tuned model achieves significantly lower accuracy
compared to DCD trained models for various subsets of 160 classes.
Results using only seed: We observe that models trained using only seed achieve high accuracy on Seed and Mfreq. This is
expected because the seed images were added to the training set. However, the results on Heldout and Compl. sets are poor.

Debug-Train
method

Accuracy on different sets

incorrectly classified subset of 160 classes all 1000 classes
Seed Heldout MFreq Compl. INet MFreq Compl. INet

original 0% 0% 35.56% 56.89% 62.89% 63.70% 76.12% 76.47%

Complete (F) 18.53% 23.09% 37.56% 53.84% 49.22% 61.70% 72.93% 75.07%

Random (F) 16.78% 20.17% 41.56% 58.81% 63.91% 63.77% 75.21% 76.37%

semi-supervised 12.51% 19.47% 36.13% 54.08% 60.09% 63.65% 74.28% 74.44%

semi-weakly supervised 17.46% 24.20% 40.88% 58.51% 63.96% 66.99% 77.50% 77.18%
finetuning 32.61% 24.05% 47.55% 56.63% 59.66% 62.85% 71.46% 75.51%

only seed 44.42% 15.58% 59.31% 56.47% 63.78% 68.05% 76.28% 76.86%

DCD-DINO (ViT-S/8) 36.28% 29.62% 54.06% 63.85% 64.62% 65.28% 76.42% 76.54%

DCD-DINO (ViT-S/16) 36.76% 26.98% 55.00% 62.83% 64.11% 65.69% 75.38% 76.41%

DCD-Resnet (Standard) 32.39% 28.09% 51.75% 63.31% 64.57% 65.62% 75.96% 76.70%

DCD-Resnet (Robust) 33.07% 26.84% 51.5% 62.29% 62.27% 65.04% 75.70% 76.50%

Table 4. Results for various DCD variants. “INet” denotes the ImageNet test set, “MFreq” denotes the ImageNet-V2 [56] MatchedFre-
quency set, “Compl.” denotes the Complement set (all ImageNet-V2 images excluding “MFreq”).



G. Results in the multiple-model setting
In this setting, we construct seed and heldout sets using images incorrectly classified by all of the 20 highly accurate

models (details in Appendix B). The seed and heldout sets contain 563 and 264 images respectively.

Debug-
Train
method

Accuracy on different sets

incorrectly classified subset of 160 classes all 1000 classes
Seed Heldout MFreq Compl. INet MFreq Compl. INet

original 0% 0% 35.56% 56.89% 62.89% 63.70% 76.12% 76.47%

Complete (F) 8.88% 7.95% 37.56% 53.84% 49.22% 61.70% 72.93% 75.07%

Random (F) 2.66% 3.03% 40.31% 59.35% 63.95% 63.76% 75.96% 76.60%

DCD-DINO (ViT-S/8) 19.89% 8.33% 47.31% 60.25% 63.74% 65.32% 75.81% 76.61%

DCD-DINO (ViT-S/16) 21.67% 4.92% 47.38% 60.43% 63.94% 64.93% 76.03% 76.49%

DCD-Resnet (Standard) 17.58% 7.57% 46.56% 61.27% 64.34% 64.69% 76.23% 76.63%
DCD-Resnet (Robust) 15.98% 6.06% 45.31% 60.43% 64.00% 64.95% 75.80% 76.58%

Table 5. Results for multiple-model seed and heldout sets. “INet” denotes the ImageNet test set, “MFreq” denotes the ImageNet-V2 [56]
MatchedFrequency set, “Compl.” (Complement) denotes the set of all ImageNet-V2 images excluding “MFreq” images.

G.1. Table details

In Table 5, the columns “Seed” and “Heldout” show the accuracy on images in “Mfreq” and “Complement” sets respec-
tively from the 160 classes (T ) that were incorrectly classified by the all 20 models (B). Note that these are equivalent to the
seed and heldout sets discussed in Section 3.4.

In the last four rows, “Debug-Train method” denotes the model Φ used for computing visual similarity distances. DCD-
DINO (ViT-S/8) and (ViT-S/16) denote the models trained using DINO ViT-S/8 and ViT-S/16 models. DCD-Resnet (Stan-
dard) and (Robust) denote the models trained using Standard and Robust Resnet-50 models.

G.2. Discussion

For the “Debug-Train method”: DCD-DINO (ViT-S/8), in the column “incorrectly classified” achieves the highest accu-
racy on Heldout: 8.33%. Notably, on heldout, the accuracy is only slightly higher than “Complete (F)” (0.38%). However,
“Complete (F)” shows 13.67% drop in performance on ImageNet (160 class subset). Although the accuracy of Random (F)
is similar to original model on “INet (160)”, it performs considerable worse compared to DCD-DINO (ViT-S/8) on Heldout:
we achieve 8.33% significantly better the “Random (F)” method (3.03% i.e. gain of 5.3%).

While one may believe that the images misclassified by 20 ImageNet trained models would have multiple objects or may
be mislabeled. We find that this is not the case for several images from both the seed and heldout-debug sets. We show images
correctly classified by our model and misclassified by 20 ImageNet trained models in Appendix H (for the seed-debug set)
and Appendix I (for the heldout-debug set).



H. Examples of images from the seed-debug set
Figures 7, 8, 9 and 10 show several images from the seed-debug set on which we obtain correct predictions.

green lizard garter snake water snake diamondback diamondback

diamondback trilobite garden spider black grouse papillon

american staffordshire terrier wire-haired fox terrier wire-haired fox terrier wire-haired fox terrier lakeland terrier

lakeland terrier lakeland terrier australian terrier standard schnauzer briard

collie collie miniature pinscher pomeranian toy poodle

Figure 7. Examples of images (from the seed-debug set) on which 20 highly accurate ImageNet trained models predict incorrectly (ground
truth label below each image). However, models trained using our framework make correct predictions on all of them.



tiger cat tiger cat sea urchin porcupine hog

backpack backpack backpack bakery bonnet

brassiere breakwater breastplate breastplate breastplate

candle chime church church confectionery

cowboy boot cowboy boot cowboy boot drum frying pan

Figure 8. Examples of images (from the seed-debug set) on which 20 highly accurate ImageNet trained models predict incorrectly (ground
truth label below each image). However, models trained using our framework make correct predictions on all of them.



grille grille hair slide hair slide jean

lampshade laptop laptop monitor moped

pajama pajama patio pedestal pencil box

police van projectile purse radiator restaurant

revolver rubber eraser scabbard scabbard scabbard

Figure 9. Examples of images (from the seed-debug set) on which 20 highly accurate ImageNet trained models predict incorrectly (ground
truth label below each image). However, models trained using our framework make correct predictions on all of them.



stone wall stone wall table lamp tennis ball tennis ball

tow truck window shade wine bottle wine bottle wine bottle

ice cream ice cream espresso promontory seashore

Figure 10. Examples of images (from the seed-debug set) on which 20 highly accurate ImageNet trained models predict incorrectly (ground
truth label below each image). However, models trained using our framework make correct predictions on all of them.



I. Examples of images from the heldout-debug set
Figure 11 shows images several from the heldout-debug set on which we obtain correct predictions.

garter snake dandie dinmont standard schnauzer briard chime

dining table dining table hook police van screen

stone wall sunglasses tennis ball toaster toaster

Figure 11. Examples of images (from the heldout-debug set) on which 20 highly accurate ImageNet trained models predict incorrectly
(ground truth label below each image). However, models trained using our framework make correct predictions on all of them.



J. Comparing between images discovered using weak labels and no labels
In this Section, we show several examples showing that selecting images without using any weak labels outputs samples

where the main object, in this case, king snake, is absent, which can introduce wrongly labeled images in the dataset.

label: king snake

Figure 12. left: wrongly predicted image with label king snake, right: similar images obtained using DINO ViT-S/8 model with two
different methods.

banana

Figure 13. left: image with label banana, right: similar images obtained using the two different methods

candle

Figure 14. left: image with label candle, right: similar images obtained using the two different methods



church

Figure 15. left: image with label church, right: similar images obtained using the two different methods

church

Figure 16. left: image with label church, right: similar images obtained using the two different methods

coffee mug

Figure 17. left: image with label coffee mug, right: similar images obtained using the two different methods

frypan

Figure 18. left: image with label frypan, right: similar images obtained using the two different methods



ice cream

Figure 19. left: image with label ice cream, right: similar images obtained using the two different methods

toy poodle

Figure 20. left: image with label toy poodle, right: similar images obtained using the two different methods

wine bottle

Figure 21. left: image with label wine bottle, right: similar images obtained using the two different methods
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