
Deep Image Fingerprint:
Towards Low Budget Synthetic Image Detection and Model Lineage Analysis —

Supplemental Material

Sergey Sinitsa, Ohad Fried
Reichman University

This document is structured as follows: In Appendix A
we provide expanded implementation details. In Ap-
pendix B we explain the GAN datasets and the data prepara-
tion process using Stable Diffusion model variants. In Ap-
pendix C we present additional experimental results.

A. Implementation Details
This section includes the implementation details of our

work. The DIF models were trained and tested on an RTX
3060 GPU with 12 GB of VRAM. We used PyTorch [12] as
our deep learning framework.

A.1. Selection of Denoising Filter

Here we explain why DnCNN [17] was chosen as the de-
noising filter (fD ) for all the fingerprint methods. The ob-
jective of the fD is to extract only noise and artifacts while
filtering out the semantic information of the image. The
pattern of F is primarily present in the high-mid frequen-
cies [9], making a high-pass filter a straightforward choice
as a reference fD . However, some semantic content, such
as edges, also exists in these frequencies. Therefore, a more
sophisticated denoising filter is required. DnCNN is such a
filter. It is trained to extract Gaussian noise while preserving
edges, and it has demonstrated good performance with other
types of noise as well [17]. To validate our assumption, we
compare the performance of Marra18, Joslin20, and DIF us-
ing both a Gaussian high-pass filter and DnCNN (Tab. A).

Method Gaussin High-Pass DnCNN

Marra18 52.4 62.6
Joslin20 51.0 51.7
DIF 73.3 92.3

Table A. Mean accuracy (%) of detection for LTIMs. 1024 images
were used in train set for each.

As expected, all of the methods perform worse with the
Gaussian high-pass filter. The high-frequency content of

the image influences the averaged and extracted fingerprint
pattern, leading to low correlation values between unseen
residuals (test set) and fingerprints.

A.2. Usage of DnCNN

The DnCNN-S [17] model was trained separately from
the residual extraction procedure. The training was per-
formed according to the original work with minor changes.
We trained the DnCNN-S model for 2,000 epochs with a
learning rate of 10−4 and the Adam optimizer [8]. Only
real images were used during training. Random crop is set
to size (48 × 48) pixels and a sigma range is set to [5, 15].
The number of training images is 1024.

During the inference of the DnCNN, we applied post-
processing. First, the input to the DnCNN was padded
with 10 pixels on each dimension and then reduced as post-
processing according to the recommendations of the au-
thors [17]. Additionally, we observed a bias within the
residuals, so we performed an additional post-processing
step. We took the training set of the DnCNN and calcu-
lated the average of its residuals, thus estimating the finger-
print of the DnCNN (FDnCNN ). During the inference of
the model, this fingerprint was subtracted from the output
according to:

Ri = fD(Xi)−FDnCNN (1)

A.3. U-Net Architecture

In Tab. B, we summarize the architecture of the U-Net
model, denoted in the paper as gθ. Each row represents a
convolution block, comprised of two convolutional layers
and either an up-sampling or a down-sampling layer. The
convolutional layers have a kernel size of 3, stride of 1, and
padding of 1 pixels for each spatial dimension to achieve
boundary artifacts. Each convolutional layer is accompa-
nied by Batch-Normalization [4] and an activation function,
which are specified in Tab. B. We use max-pooling with a
kernel size of 2× 2 pixels for down-sampling and a decon-
volution layer with a kernel size of 2×2 pixels and stride of
2 pixels for up-sampling. The latter is suspected to be the



Model Cin Cout fact

Encoder

16 32 Leaky-ReLU
32 64 Leaky-ReLU
64 128 Leaky-ReLU
128 256 Leaky-ReLU

Decoder

256+256 128 Leaky-ReLU
128+128 64 Leaky-ReLU

64+64 32 Leaky-ReLU
32+32 32 Leaky-ReLU

32 3 TanH

Table B. U-Net model architecture. Each row represents a convo-
lutional block, with Cin and Cout indicating the input and output
channels, respectively. fact is the activation function used in the
block. The symbol “+” in Cin indicates that the layer input in-
cludes skip connections.

main causes of grid-like artifacts [10]. The last block con-
sists only of a single convolution layer where we do not use
Batch-Normalization and rely on hyperbolic tangent (TanH)
as the activation function.

A.4. Selection of Model Architecture

We selected the U-Net architecture through hyperparam-
eter tuning and by incorporating concepts mentioned in Sec-
tion 3.1. A Convolutional Network (C-Net) consists of con-
volutional blocks without down-sampling and up-sampling
operations. An Up-Sampling Network (D-Net) serves as the
decoder in the U-Net model. U-Net with 1x1 kernels within
convolutional layers denoted as U1-Net, where we test the
importance of only up-sampling artifacts. U-Net refers to
the aforementioned architecture.

In Tab. C, U-Net outperforms other architectures, while
C-Net shows the worst performance due to the lack of up-
sampling, which is crucial (Section 3). Interestingly, C-Net
shows minimal decline when used with the GLIDE model,
indicating a dominant presence of boundary artifacts (Fig-
ure 2). Additionally, U1-Net, designed to reduce boundary
artifacts, experiences approximately a 5% decline compared
to other architectures when used with GLIDE.

D-Net performs similarly to U-Net as both models gen-
erate both up-sampling and boundary artifacts. However,
U-Net was chosen due to its superior performance.

B. Datasets
B.1. GAN Datasets

The GAN datasets that we use in this work are from
the supplementary materials of Wang et al. [15]. Train set
consists of 360k real images corresponding to 20 LSUN
classes [16] and 360k images generated by 20 ProGAN [5]
models. Models are trained per LSUN class. For the Pro-
GAN dataset we randomly select 2,000 images per real and

fake class, for each LSUN image class, resulting in 4,000
images per LSUN class overall. Test set of [15] contains
images generated by a number of GANs, specifically by
StyleGAN [6], StyleGAN2 [7], BigGAN [1], StarGAN [2],
GauGAN [11] and ProGAN [5].

B.2. Fined-Tuned Stable Diffusion Models

We will outline the process of constructing datasets for
the fine-tuned Stable Diffusion models discussed in ??. In
all cases, fine-tuning involves the DreamBooth method [13],
specifically LTIM is trained to reproduce a target object or
style from a pre-defined keyword. There are three mod-
els: SD 1.4S, SD 1.5A, and SD 2.0R. The authors customly
fine-tuned SD 1.4S with 10 photos. SD 1.5A1 is a publicly
available model that was fine-tuned in two stages: first, SD
1.4 was fine-tuned with 680k anime images, and then, after
replacing the image decoder with one from SD 1.5, it was
additionally fine-tuned with [13] on a different set of anime
images. The last model, SD 2.0R2, is fine-tuned with an
unspecified amount of robot images. Following above, key-
words are known for each case, as SD 1.4S is trained by us,
and for others, keyword is specified in the instructions for
each model. To produce images with a new models a key-
word is added to captions from the Laion-5B dataset [14]
in the following format: “keyword caption”. This forces
fine-tuned model to generate images with new information
previously unknown to the source models. Fig. E shows an
example of outputs resulting from the same caption.

C. Additional Results

C.1. The Effect of Train Set Size

In Section 4 we present an evaluation of the proposed
method as a detector of generated images. To evaluate the
method under various amounts of training samples, we mea-
sure performance on images produced by both GAN and
LTIM models, as shown in Figs. B and C. We observe that
the accuracy remains stable across most of the models and
starts to degrade drastically at NS = 128, where we observe
a 5% drop for the majority of the models.

C.2. Consistency for a Low Sample Amount

We report the consistency of accuracy with a low num-
ber of samples. In this setting, each training sample has a
greater impact on the results. To test this effect, we trained
four models (Resnet-50, Grag21, Resnet-M, and DIF) ten
times with 128 samples according to Section 4.2. Each time
we randomly sampled the training set. As shown in Fig. D,
despite the weaker consistency of the results for DIF, statis-
tics support the relation observed in Table 2.

1https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion
2https://huggingface.co/nousr/robo-diffusion-2-base

https://huggingface.co/DGSpitzer/Cyberpunk-Anime-Diffusion
https://huggingface.co/nousr/robo-diffusion-2-base


Architecture SD 1.4 SD 2.1 MJ DALL·E-Mini GLIDE DALL·E-2 Mean

U-Net 99.3 89.5 99.0 99.0 90.3 79.5 92.8
U1-Net 99.4 88.8 98.9 98.3 85.2 80.2 91.8
D-Net 99.4 89.3 98.9 99.0 89.0 78.0 91.9
C-Net 60.7 53.3 89.9 98.0 88.2 69.6 76.6

Table C. Detection accuracy (%) of CNN architectures on images from LTIMs. D-Net is a up-sampling network and C-Net convolutional
network. U-Net demonstrates best results.

Figure A. Cross-detection accuracy (%) for GAN models.

Figure B. Accuracy (%) as a function of train samples for GAN
models.

Figure C. Accuracy (%) as a function of train samples for LTIM
models.

C.3. Cross-Detection for GAN Models

We report the complete map of cross-detection for
datasets corresponding to GAN and ProGANt models in
Figs. A and F respectively. As shown in the figures, the
cross-correlation is low for all the models, thus models were
trained separately.

C.4. Cross-Detection for Custom Trained ProGANs

Models PA, PB , P̂A and P̂B were trained on centrally
cropped images (128× 128 px) from AFHQ [3]. We report
the full cross-detection matrix for the four models in Fig. H.
The cross-detection across all the models is similar, namely
no symmetry between different models and high-symmetry
within converged models. In addition we present the exam-
ples of images generated by PA ordered according to check
point epochs at Fig. G. Image quality corresponds to the
convergence state of the model. Starting from epoch 40 the
model produces visually appealing results, that correspond
to symmetric and high cross-detection accuracy observed in
Fig. H. Cross-detection for P̂A is symmetric, but with lower
cross-detection accuracy values. We suspect that in this spe-
cific case, the model did not converge properly.



Figure D. Box plots of accuracy per image generator dataset. DIF demonstrates less consistent results, especially with SD 2.1., but preserves
relation from Table 2.

SD 1.4 SD 1.4S SD 1.5A SD 2.1 SD 2.0R

Figure E. Examples of images produced by Stable Diffusion models and their variants. Images correspond to the caption “Best Public Arts
Installations park 2015” and addition of model specific keywords.

C.5. Cross-Detection vs. Cross-Correlation

In this section, we clarify why model lineage estimation
is performed using image cross-detection rather than finger-
print cross-correlation. Cross-correlation (Section 3) is an
intuitive process where we expect a correlation value of 1
for a fingerprint matched with itself, high absolute values
for similar fingerprints, and low values for unrelated fin-

gerprints. However, in our experiments (Section 4.3), we
found that these values are not informative. The absolute
cross-correlation values of the extracted fingerprints (FE)
exhibit a random pattern (Fig. J), while the fingerprints ob-
tained through residual averaging (FA) display a trend sim-
ilar to cross-detection (Fig. I). However, the cross-detection
ofFA decreases more rapidly with epochs, lacks normaliza-
tion, and is always symmetric. As a result, the certainty of



Figure F. Accuracy (%) cross-detection for ProGAN models.

model relationships is diminished due to: a) increased sen-
sitivity to changes during training/fine-tuning, b) absence of
a symmetry parameter, and c) insufficient information from
the correlation value alone.



Im
ag

e
E

xa
m

pl
e

Epoch 20 Epoch 32 Epoch 40 Epoch 52 Epoch 70

Figure G. Examples of images produced by PA ordered according to check point epochs. Starting from epoch 40 images retain high-quality.

Figure H. Cross-detection accuracy (%) for ProGAN models PA, PB , P̂A and P̂B . Clusters of high cross-detection accuracy re-appear for
each model at epoch 40,52 and 70.



Figure I. Cross-correlation of FA for ProGAN models PA, PB , P̂A and P̂B . Values are symmetric for all the models and cluster of high
values (above 0.5) are smaller then in Fig. H.



Figure J. Cross-correlation of FE for ProGAN models PA, PB , P̂A and P̂B . Relation appears to be random.



References
[1] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale gan training for high fidelity natural image synthesis.
arXiv, 2019. 2

[2] Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha,
Sunghun Kim, and Jaegul Choo. Stargan: Unified genera-
tive adversarial networks for multi-domain image-to-image
translation. In 2018 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 8789–8797, 2018. 2

[3] Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha.
Stargan v2: Diverse image synthesis for multiple domains.
CoRR, abs/1912.01865, 2019. 3

[4] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. CoRR, abs/1502.03167, 2015. 1

[5] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability,
and variation. arXiv, 2018. 2

[6] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 43(12):4217–4228, 2021. 2

[7] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of stylegan. In 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 8107–8116, 2020. 2

[8] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. CoRR, abs/1412.6980, 2014. 1

[9] Francesco Marra, Diego Gragnaniello, Luisa Verdoliva, and
Giovanni Poggi. Do gans leave artificial fingerprints? arXiv,
2018. 1

[10] Augustus Odena, Vincent Dumoulin, and Chris Olah. De-
convolution and checkerboard artifacts. Distill, 2016. 2

[11] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. arXiv, 2019. 2

[12] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch, 2017. 1

[13] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch,
Michael Rubinstein, and Kfir Aberman. Dreambooth: Fine
tuning text-to-image diffusion models for subject-driven
generation. arXiv, abs/2208.12242, 2022. 2

[14] Christoph Schuhmann, Romain Beaumont, Richard Vencu,
Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Worts-
man, Patrick Schramowski, Srivatsa Kundurthy, Katherine
Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia
Jitsev. Laion-5b: An open large-scale dataset for training
next generation image-text models, 2022. 2

[15] Sheng-Yu Wang, Oliver Wang, Richard Zhang, Andrew
Owens, and Alexei A. Efros. Cnn-generated images are sur-
prisingly easy to spot... for now. arXiv, 2019. 2

[16] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianx-
iong Xiao. LSUN: construction of a large-scale image

dataset using deep learning with humans in the loop. CoRR,
abs/1506.03365, 2015. 2

[17] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and
Lei Zhang. Beyond a gaussian denoiser: Residual learning
of deep CNN for image denoising. IEEE Transactions on
Image Processing, 26(7):3142–3155, Jul 2017. 1


	. Implementation Details
	. Selection of Denoising Filter
	. Usage of DnCNN
	. U-Net Architecture
	. Selection of Model Architecture

	. Datasets
	. GAN Datasets
	. Fined-Tuned Stable Diffusion Models

	. Additional Results
	. The Effect of Train Set Size
	. Consistency for a Low Sample Amount
	. Cross-Detection for GAN Models
	. Cross-Detection for Custom Trained ProGANs
	. Cross-Detection vs. Cross-Correlation


