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In this Supplementary Material, we will present addi-

tional examples from the SyntheWorld dataset, demonstrat-

ing its diversity. Following this, we will show our process of

directing GPT-4 [15] to generate effective prompts for Sta-

ble Diffusion [17] and its variant models to create land cover

textures, including examples of both prompts and generated

textures.

Subsequently, we will provide the dataset divisions and

relevant experimental settings for the cross-domain land

cover mapping task, along with the quantitative and qual-

itative results of land cover mapping and building change

detection tasks on a broader range of models.

Lastly, we will detail the specific information of all

Blender [5] addons utilized in the creation of the Synthe-

World dataset.

S1. Expanded Examples from SyntheWorld

Fig. S1 presents the 2D UMAP [14] visualization of the

features extracted using ResNet-50 [7] from the Synthe-

World dataset, along with the corresponding area image ex-

amples. During the creation of the SyntheWorld dataset,

we intentionally simulated concentrated styles of regions in

the real world, such as cities brimming with skyscrapers,

suburbs dominated by low-rise apartments, grasslands, and

farmland, as well as mountainous and desert areas charac-

terized by earthen houses and bareland. These images of

varied styles cluster together in feature space, effectively

showcasing the diversity of the SyntheWorld dataset.

S2. Land Cover Texture Synthesis

We utilized GPT-4 [15] along with a series of Stable Dif-

fusion models [20,21] to generate textures. Its performance

far surpasses the GAN [8] series models in various image

generation tasks. The most remarkable aspect of Stable Dif-

fusion is its text-to-image generation model, which, given

precise and detailed prompts, can produce images highly

consistent with the prompt descriptions. As it was trained

on the LAION-5B dataset [19], a massive dataset compris-

ing 50 billion image-text pairs, it has ample capability to

function as a texture generator, a feature already used by the

dream-texture [11] addon in the Blender community. How-

ever, if the prompts are not detailed and accurate enough,

the images generated by Stable Diffusion can be highly un-

predictable.

In the early stage of SyntheWorld creation, we attempted

to generate textures using simple manually written prompts,

but the textures produced often lacked diversity and qual-

ity. Therefore, inspired by a YouTube video 1, we em-

ployed GPT-4 as a prompt generator for the Stable Diffu-

sion model.

As illustrated in Figure S2, we initially facilitated GPT-

4’s understanding of the Stable Diffusion operation pro-

cess by leveraging guidance from the Stable Diffusion Man-

ual and successful prompt examples sourced from Lexia 2.

Subsequently, we would provide the subject for the texture

we wish to generate, and GPT-4 would return high-quality

prompts to us. This process allowed for unlimited interac-

tion with GPT-4 to correct and refine the prompts.

Specifically, we used the Stable Diffusion v2.1 [21]

and DeepFloyd [20] models to generate relatively low-

resolution textures, which were then upscaled to a final res-

olution of 2048 × 2048 using the Stable Diffusion x4 up-

scaler model [21]. Throughout the creation of SyntheWorld,

we generated a total of 140,000 textures for seven types of

geometries: roads, tree leaves, developed space, rangeland,

agricultural land, bareland, and rooftops. All textures had

a guidance scale of 7.5 and inference steps of 100, with

each type of texture using at least 16 different GPT-4 guided

prompts.

Fig. S3 showcases some examples of textures generated

using GPT-4 guided prompts, with all negative prompts us-

ing those provided in Fig. S2. We found that the generated

textures exhibited high quality in detail and rich diversity.

1https://www.youtube.com/watch?v=Lu2CrEpXe0M
2https://lexica.art/

1



Figure S1. 2D UMAP of images from SyntheWorld encoded by ResNet-50. Solid lines represent images sourced from the terrain-based

layout system with a GSD of 0.6-1m; dashed lines represent images sourced from the grid-based layout system with a GSD of 0.3-0.6m.

represents mountainous or desert styles; represents represents urban styles; represents suburban or rural styles.

S3. Cross-domain Land Cover Mapping

S3.1. Dataset Division and Experimental Settings

Tab. S1 presents the division of the dataset during

our cross-domain land cover mapping experiments on the

OEM [26] and LoveDA [25] datasets. Our experiments

tested two different semantic segmentation frameworks,

U-Net [18] and DeepLabv3+ [4], along with two differ-

ent CNN-based encoders, ResNet-50 [7] and EfficientNet-

B4 [22], as well as a transformer-based encoder [23], MiT-

B5 [27]. These models were sourced from the code repos-

itories by Yakubovskiy [9] and Wang [24]. All experi-

ments were carried out with a random crop of 512× 512, a

SGD [16] optimizer and a learning rate of 1e-3. All exper-

iments used a batchsize of 8, in which the mixed training

employed a 7:1 ratio of real to synthetic images. Each ex-

periment was run for 100 epochs on a single Tesla A100.

S3.2. More Quantitative and Qualitative Results

Fig. S4 respectively depict the mIoU and the IoU for

each category, during the continent-wise experiment with

the U-Net model using the EfficientNet-B4 encoder, with-

out employing SyntheWorld; with SyntheWorld; and the

changes in mIoU and IoU for each category, respectively.

We use AS to represent Asia, AF for Africa, CA for Central

America, EU for Europe, NA for North America, SA for

South America, and OC for Oceania.

Fig. S5 separately present the mIoU and the IoU for

each category during the continent-wise experiment using

the U-Net model with the EfficientNet-B4 encoder. Specif-

ically, Fig. S5 (a) illustrates the mIoU and IoU per cate-

gory when SyntheWorld is not utilized; Fig. S5 (b) shows

the mIoU and IoU per category when SyntheWorld is em-

ployed; and Fig. S5 (c) shows the changes in both mIoU and

IoU for each category.

Fig. S6 showcase the mIoU and IoU for each category

when the U-Net model employing the MiT-B5 encoder is

utilized in the continent-wise experiment. They depict the

scenarios where SyntheWorld is not in use, where it is incor-

porated, and the corresponding changes in mIoU and IoU

for each category, respectively.

We can observe that for most pairs of datasets, the Syn-

theWorld dataset brings substantial improvement to differ-



Yes,!I!am!ready!to!provide!you!with!detailed!prompts!and!negative!prompts!for!your!subjects.!Please!provide!the!subjects!you!would!like!me!to!

generate!prompts!for.

You!will!now!act!as!a!prompt!generator!for!a!generative!AI!called!"Stable!Diffusion".!Stable!Diffusion!generates!images!based on given!prompts.!

Stable!Diffusion!generates!images!based!on!prompts,!and!the!more!detailed!the!prompts!given,!the!better!the!quality!of!the!generated!images.!

So!I!hope!you!can!give!as!specific!a!description!as!possible.!Now!I!want!to!generate!seamless!high!quality!tiled!textures!for my scene!in!blender.!

Some!successful!samples!are!described!below.

- seamless!tileable!texture!of!damaged!rusted!metal,!realistic,!very!detailed,!beautiful,!intricate!details,!sharp!focus,!substance!designer,!

substance!render,!substance!painter,!marmoset,!unreal!engine,!octane!render

- moss!texture!material,!high!definition,!high!detail,!8k,!photorealistic

- arable!land!planted!with!different!crops,!Shot!Angles!- OVERHEAD,!strips!of!artificial!demarcation,!artificial!patterns,!horizontal!or!vertical!long!

strips,!8k,!intricate,!extreme!fine!detail

- a!top-down!view!texture!of!concrete-made!roofing!with!a!solar!panel,!chimney,!and!some!plants,!8k,!detailed,!intricate,!realistic

Please!note!that!I!want!to!generate!tiled!textures!for!a!overhead view,!so!it!is!important!to!specify!the!specific!camera!view!using!OVERHEAD,!

TOP-DOWN!VIEW,!or!something!like!that.

Also,!some!negative!prompts!are!very!important!for!Stable!Diffusion!to!generate!high!quality!images!or!to!remove!some!objects.!For!example,!

adding!the!following!negative!prompts!will!significantly!improve!the!quality!of!the!generated!images.

- non-realistic,!non-photographic,!blurry,!draft,!grainy,!ugly,!tiling,!drawn,!deformed,!bad!anatomy,!watermark,!signature,!cut!off,!low!contrast,!

underexposed,!overexposed,!bad!art,!beginner,!amateur.!I!will!give!a!few!subjects!next,!so!please!generate!prompts!and!negative!prompt!for!me!

based!on!the!above!references.

Are!you!ready?

could!you!give!around!8!prompts!for!different!color!of!clay!tiles!roof!textures!?

Sure,!here!are!the!prompts!for!eight!different!colors!of!clay!tile!roof!textures:

Positive prompts:

1. Overhead view!of!a!tileable!and!seamless!dark!brown!clay!tiles!roof!texture,!direct!overhead!view!ensuring!a!straight-down!perspective,!high-

resolution!8k,!realistic!appearance,!interlocking!clay!tiles,!dark!brown!tones!offering!an!aged!and!rustic!appeal,!each!tile!showing!the!natural!

texture!of!fired!clay,!sharp!focus,!uniform,!diffused!daylight.

2. Overhead view!of!a!tileable!and!seamless!red!clay!tiles!roof!texture,!featuring!crimson!red!tiles,!direct!overhead!view,!high-resolution 8k,!

realistically!capturing!the!distinct!curves!and!texture!of!red!fired!clay,!displaying!the!rich!and!vibrant!color!of!traditional!red!clay,!sharp!focus.

3. Overhead view!of!a!tileable!and!seamless!beige!clay!tiles!roof!texture,!featuring!a!neutral!beige!color!that!gives!an!understated!elegance,!direct!

overhead!view,!high-resolution!8k,!accurately!depicting!the!granular!texture!and!shape!of!beige!clay!tiles,!sharp!focus.

4. Overhead view!of!a!tileable!and!seamless!charcoal!gray!clay!tiles!roof!texture,!featuring!the!unusual!and!modern!look!of!charcoal!gray tiles,!

direct!overhead!view,!high-resolution!8k,!displaying!the!surface!texture!and!interlocking!pattern!of!gray!clay!tiles,!sharp!focus.

5. Overhead view!of!a!tileable!and!seamless!terracotta!clay!tiles!roof!texture,!direct!overhead!view!ensuring!a!straight-down!perspective,!high-

resolution!8k,!realistically!showing!the!earthy,!warm!hue!of!terracotta,!each!tile!displaying!the!natural!porous!texture!of!fired!clay,!sharp!focus.

6. Overhead view!of!a!tileable!and!seamless!yellow!clay!tiles!roof!texture,!direct!overhead!view,!high-resolution!8k,!realistic!appearance,

displaying!the!sunny!and!cheerful!shade!of!yellow!clay!tiles,!capturing!the!natural!texture!of!fired!clay,!sharp!focus.

7. Overhead!view!of!a!tileable!and!seamless!black!clay!tiles!roof!texture,!direct!overhead!view,!high-resolution!8k,!realistic!appearance,!featuring!

the!bold!and!dramatic!look!of!black!clay!tiles,!capturing!their!distinct!shape!and!surface!texture,!sharp!focus.

8. Overhead view!of!a!tileable!and!seamless!white!clay!tiles!roof!texture,!direct!overhead!view,!high-resolution!8k,!realistic!appearance,!featuring!

the!clean!and!modern!look!of!white!clay!tiles,!accurately!depicting!their!shape!and!surface!texture,!sharp!focus.

Negative!prompt:

- Unrealistic,!non-photographic,!out!of!focus,!rough,!pixelated,!unattractive,!sketched,!distorted,!incorrect!proportions,!embedded text,!abrupt!

edges,!insufficient!contrast,!dim,!overbright,!poor!quality,!novice,!inexperienced.

Figure S2. Guide GPT-4 to generate prompts.

Dataset division OEM LoveDA

Africa Asia Central America Europe North America South America Oceana Urban Rural

# of training images 592 568 218 902 490 523 196 1156 1366

# of testing images 259 247 94 391 210 226 84 677 992

Table S1. Dataset division for cross-domain land cover mapping experiments.



Prompt:!�Brown!and!tan!marble!textured!background,!shot!angles!- overhead,!high-resolution!8k,!realistic!appearance,!interplay!of!light!tan!and!deep!brown!hues,!

organic!marble!patterns!and!veins,!polished!surface!reflecting!soft!light,!detailed!intricacies,!sharp!focus,!natural!illumination,!compatible!with!popular!3D!engines!

and!rendering!software.�

Bareland

Prompt:!�Satellite!view!of!a!tileable!and!seamless!dry!cultivated!land,!extreme!long!shot,!overhead!view,!high-resolution!8k,!realistic!appearance,!parched!and!

cracked!soil!texture,!faint!traces!of!former!crop!rows,!sharp!focus,!uniform,!diffused!daylight.�

Agricultural!land

Prompt:!�Overhead!view!of!a!parking!lot,!vertical!image,!shot!angles!- satellite!view,!high-resolution!8k,!realistic!appearance,!monotone gray!of!asphalt,!carefully!

marked!parking!spaces!with!white!lines,!occasional!oil!stains,!sharp!focus,!natural!illumination,!compatible!with!popular!3D!engines!and!rendering!software.�!

Developed!space

Prompt:!�satellite!view!meadow!background!of!a!terrain!dominated!by!herbaceous!with!mud,!extreme!long!shot,!high-resolution!8k,!true-to-life!appearance,!

featuring!specific!species!such!as!ryegrass,!fescue,!and!buffalo!grass,!varying!shades!of!green,!natural!distribution!in!small!clusters!and!patches,!subtle!elevation!

changes,!meticulous!details,!crisp!focus.�

Rangeland

Prompt:!�Satellite!view!of!a!tileable!and!seamless!asphalt!texture,!featuring!only!one!vertical!road!line!right!in!the!middle!of!the!open space,!extreme!long!shot,!

overhead!view,!high-resolution!8k,!realistic!appearance,!dark!asphalt!with!subtle!surface!imperfections,!a!single!stark!road!line!striking!through!the!center,!sharp!

focus,!uniform,!diffused!daylight.�

Road

Prompt:!�Satellite!view!of!a!tileable!and!seamless!clay!tiles!roof!texture,!direct!overhead!view!ensuring!a!straight-down!perspective,!high-resolution!8k,!realistic!

appearance,!rows!of!interlocking!clay!tiles!with!their!distinct!curved!shape,!showing!variations!of!burnt!orange!and!reddish-brown!tones,!each!tile!exhibiting!the!

natural!porous!texture!of!fired!clay,!sharp!focus,!uniform,!diffused!daylight.�

Roof

Figure S3. Examples of different types of textures generated by GPT-4 guided prompts.



ent models. Meanwhile, Fig. S7 shows more visualization

results of the performance improvement brought about by

SyntheWorld for different pairs of datasets through different

models. This further validates the robustness of the addi-

tional knowledge brought about by the SyntheWorld dataset

to real datasets.

To better interpret the experimental results in Figs. S4

to S6, we further analyze the average improvements in

IoU for different land cover categories and the improve-

ment of mIoU in out-of-domain testing experiments in the

continent-wise setup, which are detailed in Tab. S2.

Across different models and land cover categories, the

U-Net model with the MiT-B5 backbone appears to offer

the most improvement in terms of average IoU in the Bare-

land, Rangeland, Developed Space, Road and Tree cate-

gories. However, the U-Net model with the EfficientNet-B4

backbone has the highest IoU improvement for the ’Water’

category. In terms of the category of Agriculture Land, the

DeepLabv3+ with ResNet-50 backbone model shines with

the highest IoU improvement. Similarly, the DeepLabv3+

with ResNet-50 model has the highest improvement in IoU

in the Building category. Furthermore, considering the av-

erage improvement in mIoU, the U-Net model with MiT-B5

backbone appears to outperform the other two models.

S4. Additional Results for Building Change

Detection

Tab. S3 presents the F1 scores of the FC-siam-

Diff [6] model on three building change detection bench-

mark datasets: LEVIR-CD+ [3], SECOND [28], and WHU-

CD [10]. The table compares the results of the model when

run without (w / o) and with (w / o) SyntheWorld, which is

not present in the main paper.

We follow a mixed training approach, maintaining a ratio

of 7: 1 for real to synthetic images. We use the Adam [12]

optimizer, setting the learning rate at 1e-3. Each experiment

is conducted over 100 epochs and is executed on a Tesla

A100 GPU.

Specifically, for the LEVIR-CD+ dataset, the model

scored an F1 of 0.751 without SyntheWorld and improved

to 0.766 with SyntheWorld. On the SECOND dataset, the

model achieved an F1 score of 0.614 without SyntheWorld,

and this score increased to 0.677 when SyntheWorld was

used. Lastly, on the WHU-CD dataset, the F1 score of the

FC-siam-Diff model was 0.812 without SyntheWorld and

reached 0.840 with the use of SyntheWorld.

In all three cases, the use of SyntheWorld improved F1

scores, showing that it had a positive impact on the perfor-

mance of the FC-siam-Diff [6] model when incorporating

SyntheWorld.

We also include three tables that detail the results of

the same experiment set, i.e. training data is scarce, per-

formed using the FC-siam-Diff [6], ChangeFormer [1], and

STANet [3] models.

Tab. S4 shows the performance of the FC-siam-Diff

model when trained with different fractions of the real-

world training set, both with and without SyntheWorld.

Consistently, across all real-world datasets and at every per-

centage level, the incorporation of SyntheWorld boosts the

model’s performance.

Similar results are presented in Tab. S5 and Tab. S6,

which correspond to the ChangeFormer and STANet mod-

els, respectively. Again, in each case, the addition of Syn-

theWorld consistently enhances the model’s performance

across all datasets and at each level of real-world training

data usage.

These results corroborate the main finding reported in

the paper, reinforcing that the SyntheWorld dataset invari-

ably provides a significant performance boost, particularly

when the amount of real training data is limited. This ben-

eficial effect is observed not only in the DTCDSCN [13]

model, but also in the FC-siam-Diff, ChangeFormer, and

STANet models.

As demonstrated in Tables S7, S8, and S9, we have

conducted comprehensive experiments with the DTCDSCN

and FC-siam-Diff models, training them on two synthetic

datasets, AICD [2] and SyntheWorld, and subsequently

testing these models on three real-world datasets.

In the training phase with the synthetic datasets, we uti-

lized the Adam optimizer and set the learning rate to 5e-4.

A notable observation is that synthetic data-trained models

typically achieved their best performance within fewer than

50 epochs.

In order to draw a meaningful comparison, Oracle ex-

periments were also performed, in which the models were

trained directly on real-world datasets. In these instances,

we adopted a higher learning rate of 1e-3 and found that the

models reached their optimal performance approximately

around the 100 epoch mark.

The experiments underscored a clear trend: regardless of

the real-world dataset used for testing, the models trained

on the SyntheWorld dataset consistently outperformed the

ones trained on the AICD dataset. Moreover, the perfor-

mance of SyntheWorld-trained models, while not matching

the models trained directly on the real-world datasets, came

close enough to indicate a significant value of the synthetic

dataset in training effective change detection models.

Further support for the effectiveness of the SyntheWorld

dataset can be found in Fig. S8, which provides a visual

comparison of model performance when trained with dif-

ferent datasets using different models.

This highlights the immense potential of the Synthe-

World dataset for building change detection. The ability of

SyntheWorld to close the gap between synthetic and real-

world data to an acceptable margin is an encouraging sign.

It signifies that we could significantly reduce our reliance



Methods Backbone IoU(%) mIoU(%)

Bareland Rangeland Developed space Road Tree Water Agriculture land Building

U-Net EfficientNet-B4 1.10 0.96 1.40 0.97 0.30 5.81 3.17 0.51 1.78

U-Net MiT-B5 3.46 1.68 1.68 5.53 2.87 1.26 5.44 3.30 3.16

DeepLabv3+ ResNet-50 1.53 1.24 0.95 1.46 2.15 3.88 7.32 3.40 2.74

Table S2. Average improvement in IoU for different land cover categories and average mIoU improvement in out-of-domain testing

experiments under the continent-wise setup for different models.

Datasets
FC-siam-Diff

w/o w/

LEVIR-CD+ [3] 0.751 0.766

SECOND* [28] 0.614 0.677

WHU-CD [10] 0.812 0.840

Table S3. F1 score resulting from the use or non-use of Synthe-

World across three building change detection benchmark datasets,

assessed with the FC-siam-Diff model. * means to use the part of

building change label in SECOND.

Datasets
1% 5% 10%

w/o w/ w/o w/ w/o w/

LEVIR-CD+ [3] 0.414 0.558 0.635 0.658 0.686 0.759

SECOND* [28] 0.381 0.444 0.545 0.590 0.507 0.603

WHU-CD [10] 0.420 0.519 0.680 0.717 0.732 0.738

Table S4. Comparison of F1 scores from the FC-siam-Diff model

trained with and without SyntheWorld, applied on three different

real-world datasets at varying ratios of real image use. * means to

use the part of building change label in SECOND.

Datasets
1% 5% 10%

w/o w/ w/o w/ w/o w/

LEVIR-CD+ [3] 0.357 0.469 0.520 0.581 0.602 0.671

SECOND* [28] 0.329 0.428 0.483 0.521 0.503 0.564

WHU-CD [10] 0.227 0.290 0.517 0.644 0.565 0.665

Table S5. Comparison of F1 scores from the ChangeFormer model

trained with and without SyntheWorld, applied on three different

real-world datasets at varying ratios of real image use. * means to

use the part of building change label in SECOND.

Datasets
1% 5% 10%

w/o w/ w/o w/ w/o w/

LEVIR-CD+ [3] 0.541 0.600 0.575 0.643 0.688 0.741

SECOND* [28] 0.536 0.546 0.554 0.628 0.619 0.645

WHU-CD [10] 0.295 0.344 0.524 0.595 0.687 0.719

Table S6. Comparison of F1 scores from the STANet model

trained with and without SyntheWorld, applied on three different

real-world datasets at varying ratios of real image use. * means to

use the part of building change label in SECOND.

Training Data Models

DTCDSCN FC-siam-Diff

AICD [2] 0.160 0.133

SyntheWorld 0.364 0.425

Oracle 0.793 0.751

Table S7. Comparison of the best F1 scores achieved on the

LEVIR-CD+ dataset test set by the DTCDSCN and FC-siam-Diff

models. Each model was trained on each synthetic dataset and

tested on the LEVIR-CD+ dataset. The Oracle results indicate the

performance of each model when trained and tested on the LEVIR-

CD+ dataset.

Training Data Models

DTCDSCN FC-siam-Diff

AICD [2] 0.348 0.324

SyntheWorld 0.451 0.461

Oracle 0.712 0.614

Table S8. Comparison of the best F1 scores obtained on the SEC-

OND dataset test set by the DTCDSCN and FC-siam-Diff models.

The models were independently trained on each synthetic dataset

and subsequently tested on the SECOND dataset. The Oracle per-

formance is derived from training and testing each model on the

SECOND dataset.

Training Data Models

DTCDSCN FC-siam-Diff

AICD [2] 0.231 0.236

SyntheWorld 0.550 0.540

Oracle 0.769 0.812

Table S9. Performance comparison of the best F1 scores on the

WHU-CD test set, attained by the DTCDSCN and FC-siam-Diff

models. The Oracle results represent the performance of the mod-

els when both training and testing are performed on the WHU-CD

dataset.

on large volumes of real-world data for training effective

change detection models.



(a) Without SyntheWorld.

(b) With SyntheWorld.

(c) Performance changes.

Figure S4. Results of continent-wise in-domain and out-of-domain land cover mapping experiments of OEM dataset. The x-axis represents

the target domain, and the y-axis represents the source domain. U-Net with EfficientNet-B4 encoder is used for all experiments.



(a) Without SyntheWorld.

(b) With SyntheWorld.

(c) Performance changes.

Figure S5. Results of continent-wise in-domain and out-of-domain land cover mapping experiments of OEM dataset. The x-axis represents

the target domain, and the y-axis represents the source domain. DeepLabv3+ with ResNet-50 encoder is used for all experiments.



(a) Without SyntheWorld.

(b) With SyntheWorld.

(c) Performance changes.

Figure S6. Results of continent-wise in-domain and out-of-domain land cover mapping experiments of OEM dataset. The x-axis represents

the target domain, and the y-axis represents the source domain. U-Net with MiT-B5 encoder is used for all experiments.
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Figure S7. Qualitative results of continent-wise in-domain and out-of-domain land cover mapping experiments using different models on

the OEM dataset.

S5. Attribution of Utilized Blender Addons

The development process of SyntheWorld is based on

Blender 3.4. We utilized and modified a multitude of com-

munity addons, combining them for the generation of Syn-

theWorld. Detailed information on all the addons used dur-

ing our development process is shown in Tab. S10.
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