
Supplementary for pSTarC: Pseudo Source Guided Target Clustering for Fully
Test-Time Adaptation

Manogna Sreenivas†, Goirik Chakrabarty∗, Soma Biswas†
†IISc Bangalore ∗IISER Pune

{manognas, somabiswas}@iisc.ac.in goirik.chakrabarty@students.iiserpune.ac.in

1. Augmentations
We use the same augmentations as used in AdaCon-

trast [1] here. We explicitly report the series of augmenta-
tions done along with their ranges for better reproducibility.

from torchvision import transforms

class GaussianBlur(object):
def __init__(self, sigma=[0.1, 2.0]):

self.sigma = sigma

def __call__(self, x):
sigma = random.uniform(self.sigma[0],

self.sigma[1])
x = x.filter(ImageFilter.GaussianBlur(

radius=sigma))
return x

transform_list = [
transforms.RandomResizedCrop(crop_size, scale
=(0.2, 1.0)),
transforms.RandomApply(
[transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)],
p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.RandomApply([GaussianBlur([0.1,
2.0])], p=0.5),
transforms.RandomHorizontalFlip(),
transforms.ToTensor()

]

2. Choice of parameter nc

For pseudo source feature generation, we set the total
number of features N as C × nc where C is the number
of classes and nc is the number of features we expect to be
generated per class. During test time adaptation, we set the
number of positives K as 5 for all experiments. So, ensuring
the generated feature bank to contain 5 samples per class
should suffice for the algorithm to work well without any
significant degradation in accuracy.

We use an Adam optimizer with a learning rate of 0.01
and optimize the feature bank for 50 steps. However, as we
are optimising the feature bank, naively setting N = 5×C
may not ensure there are adequate number of features (5 in

this case) per class. The optimum for the second term Ldiv

in the loss occurs only when there are equal number of sam-
ples in each class, i.e., when the class distribution become
uniform. This can not always be guaranteed, while using the
same optimization parameters across datasets. For example,
even setting 120 as the number of features for VisDA with
12 classes, atleast 5 features per class were generated. But
for DomainNet-126, using the same optimization scheme,
we observed some classes had less than 5 features gener-
ated. Instead of tuning the optimizer hyperparameters for
each dataset, we set nc sufficiently large (20 here) so that
it can be used across all datasets. We observe that on set-
ting N as 20 × C features, for all datasets, using the same
optimizer parameters and number of steps, we could en-
sure atleast 5 features per class were generated to enable
using them seamlessly during TTA. Hence, we set N to 20
features per class for all datasets, VisDA (with 12 classes),
DomainNet-126 (with 126 classes), Office-Home (with 65
classes) and CIFAR-100 (with 100 classes).

3. Pseudo Code for pSTarC

def generate_features(args, netC, num_features
=100, num_epochs=50, feature_dim=256):
netC.train()
pseudo_features = torch.randn((args.class_num

* num_features, feature_dim)).cuda()
pseudo_features.requires_grad = True
optim_feats = optim.Adam ([pseudo_features],
lr =0.01)

for t in range(num_epochs):
optim_feats.zero_grad()
scores = nn.Softmax(dim=1)(netC(

pseudo_features))
loss_ent = torch.mean(Entropy(scores))
loss_div = +torch.sum(torch.mean(scores,

0) * torch.log(torch.mean(scores, 0) + 1e-6))
loss = loss_ent + loss_div *5
loss.backward()
optim_feats.step()

return pseudo_features

1

def pstarc(args, test_loader, netFE, netC):

netC.train()

generate pseudo source features
pseudo_feats = generate_features(args, netC,
num_features=20, num_epochs=50, feature_dim=
256)
pseudo_scores = nn.Softmax(dim=1)(netC(
pseudo_feats))
pseudo_maxprobs, pseudo_label_bank = torch.
max(pseudo_scores, dim=1)

fea_bank = pseudo_feats.cpu()
fea_bank = torch.nn.functional.normalize(
fea_bank)
score_bank = pseudo_scores
label_bank = pseudo_label_bank.cpu()

optimizer = optim.SGD(netC.parameters(), lr
=5e-4, momentum = 0.9, weight_decay = 0,
nesterov = True)

iter_test = iter(loader)

for i in range(len(loader)):
inputs, labels = next(iter_test)
Get image and its strong augmentation
image, image_s = inputs

netFE.train()

get image features and its prediction
vectors

features = netFE(image)
probs_image = nn.Softmax(dim=1)(netC(

features))

get strong augmented image features and
its prediction vectors

features_s = netFE(image_s)
probs_image_s = nn.Softmax(dim=1)(

features_s)

compute sample-wise entropy
ent_batch = Entropy(p_image)
get dynamic threshold to select low

entropy samples
ent_thresh = torch.mean(ent_batch)

Computer L_aug
loss_aug = - torch.sum(probs_image *

probs_image_s, dim=1)

with torch.no_grad():
f_norm = torch.nn.functional.

normalize(features)

score_near = torch.zeros(image.shape
[0], K, class_num).cuda()

score_near_cls = torch.zeros(image.
shape[0], K, class_num).cuda()

for c in range(args.class_num):
get pseudo source features and

current batch features belonging to class c
src_cls_feats = torch.nn.

functional.normalize(fea_bank[label_bank==c])
src_cls_scores = score_bank[

label_bank==cls_idx]
curr_cls_feats = output_f_[

pseudo_label.cpu()==cls_idx]
curr_cls_probs = max_prob[

pseudo_label.cpu()==cls_idx]

Retrieve top K pseudo source
features for each test sample

cos_sim = curr_cls_feats @
src_cls_feats.T

cls_dist_near, cls_idx_near =
torch.topk(cls_dist, dim=-1, largest=True, k=
K + 1)

cls_dist_near, cls_idx_near =
cls_dist_near[:, 1:], cls_idx_near[:, 1:]

cls_score_near = src_cls_scores[
cls_idx_near]

score_near_cls[pseudo_label.cpu()
==cls_idx] = cls_score_near

select pseudo source samples as
positive for low entropy samples

score_near[ent_batch<ent_thresh] =
score_near_cls[ent_batch<ent_thresh]

self anchor the low entropy samples
score_near[ent_batch>ent_thresh] = (

probs_image[ent_batch>ent_thresh]).detach().
clone().unsqueeze(1).expand(-1, args.K, -1)

repeat probs_image(of dimension batch x
C) K times

probs_image_un = probs_image.unsqueeze(1)
.expand(-1, args.K, -1) # batch x K x C

Computer the attraction loss L_attr
loss_postive = -(probs_image_un *

score_near).sum(-1).sum(1)

Computer the dispersion loss L_attr
mask = torch.ones((features_w.shape[0],

features_w.shape[0]))
diag_num = torch.diag(mask)
mask_diag = torch.diag_embed(diag_num)
mask = mask - mask_diag
copy = softmax_out.T
dot_neg = softmax_out @ copy # batch x

batch
loss_negative = (dot_neg * mask.cuda()).

sum(-1) # batch

loss = torch.mean(loss_aug + loss_attr +
loss_disp)

optimizer.zero_grad()
loss.backward()
optimizer.step()

netFE.eval()
outputs = netC(netFE(image))
predictions = torch.max(outputs, dim=1)

return

Laug Lattr Ldisp R→C R→P P→C C→S S→P R→S P→R Average

✓ ✓ 57.1 66.6 57.1 47.8 54.7 54.1 74.0 58.8
✓ ✓ 56.0 63.6 56.0 51.8 61.7 49.9 78.7 59.7

✓ ✓ 60.1 67.3 59.6 55.0 64.8 54.6 79.8 63.0
✓ ✓ ✓ 60.8 67.7 60.3 55.6 65.3 55.8 80.2 63.7

Table 1. pSTarC ablation study: Importance of each loss term.

Method R→C R→P P→C C→S S→P R→S P→R Average

8 44.9 54.7 45.8 44.1 52.1 42.2 66.9 50.1
16 54.4 62.8 54.6 49.6 59.3 49.3 75.2 57.9
32 57.8 65.4 58.1 52.0 61.9 52.9 77.6 60.8
64 60.0 66.9 59.7 53.6 63.7 54.3 78.6 62.4

128 60.1 67.1 60.2 54.4 64.2 54.3 78.7 62.4

Table 2. Total accuracy (%) of AdaContrast on varying batch sizes.

Method R→C R→P P→C C→S S→P R→S P→R Average

8 53.5 62.6 51.2 41.2 54.1 46.2 69.9 54.1
16 56.5 65.7 56.2 49.6 59.8 51.4 75.5 59.2
32 59.4 67.2 58.0 51.1 61.9 54.5 77.0 61.3
64 61.6 68.9 60.5 54.7 64.3 57.0 79.4 63.8

128 60.8 67.7 60.3 55.6 65.3 55.8 80.2 63.7

Table 3. Total accuracy (%) of pSTarC on varying batch sizes.

4. Analysis on DomainNet-126
Here, we provide detailed analysis done on DomainNet-

126. The paper results the average accuracy across the
seven domains in Table 7 and 8 in the main paper. Here,
we provide the results for each domain shift on performing
ablation on loss components in Table 1. We also report de-
tailed results of AdaContrast (Table 2) and pSTarC (Table 3)
on varying batch sizes.

References
[1] Dian Chen, Dequan Wang, Trevor Darrell, and Sayna

Ebrahimi. Contrastive test-time adaptation. In CVPR, 2022.

