1. Augmentations

We use the same augmentations as used in AdaContrast [1] here. We explicitly report the series of augmentations done along with their ranges for better reproducibility.

```python
from torchvision import transforms
class GaussianBlur(object):
    def __init__(self, sigma=[0.1, 2.0]):
        self.sigma = sigma
    def __call__(self, x):
        sigma = random.uniform(self.sigma[0], self.sigma[1])
        x = x.filter(ImageFilter.GaussianBlur(radius=sigma))
        return x
transform_list = [
    transforms.RandomResizedCrop(crop_size, scale=(0.2, 1.0)),
    transforms.RandomApply([transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.8),
    transforms.RandomGrayscale(p=0.2),
    transforms.RandomApply([GaussianBlur([0.1, 2.0])], p=0.5),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor()]
```

2. Choice of parameter n_c

For pseudo source feature generation, we set the total number of features N as $C \times n_c$ where C is the number of classes and n_c is the number of features we expect to be generated per class. During test time adaptation, we set the number of positives K as 5 for all experiments. So, ensuring the generated feature bank to contain 5 samples per class should suffice for the algorithm to work well without any significant degradation in accuracy.

We use an Adam optimizer with a learning rate of 0.01 and optimize the feature bank for 50 steps. However, as we are optimising the feature bank, naively setting $N = 5 \times C$ may not ensure there are adequate number of features (5 in this case) per class. The optimum for the second term L_{div} in the loss occurs only when there are equal number of samples in each class, i.e., when the class distribution become uniform. This can not always be guaranteed, while using the same optimization parameters across datasets. For example, even setting 120 as the number of features for VisDA with 12 classes, at least 5 features per class were generated. But for DomainNet-126, using the same optimization scheme, we observed some classes had less than 5 features generated. Instead of tuning the optimizer hyperparameters for each dataset, we set n_c sufficiently large (20 here) so that it can be used across all datasets. We observe that on setting N as $20 \times C$ features, for all datasets, using the same optimizer parameters and number of steps, we could ensure at least 5 features per class were generated to enable using them seamlessly during TTA. Hence, we set N to 20 features per class for all datasets, VisDA (with 12 classes), DomainNet-126 (with 126 classes), Office-Home (with 65 classes) and CIFAR-100 (with 100 classes).

3. Pseudo Code for pSTarC

```python
def generate_features(args, netC, num_features=100, num_epochs=50, feature_dim=256):
    netC.train()
    pseudo_features = torch.randn((args.class_num * num_features, feature_dim)).cuda()
    pseudo_features.requires_grad = True
    optim_feats = optim.Adam ([pseudo_features], lr=0.01)
    for t in range(num_epochs):
        optim_feats.zero_grad()
        scores = nn.Softmax(dim=1)(netC(pseudo_features))
        loss_ent = torch.mean(Entropy(scores))
        loss_div = torch.mean(scores, 0) * torch.log(torch.mean(scores, 0) + 1e-6)
        loss = loss_ent + loss_div * 5
        loss.backward()
        optim_feats.step()
    return pseudo_features
```
def pstarc(args, test_loader, netFE, netC):
 netC.train()

 # generate pseudo source features
 pseudo_feats = generate_features(args, netC,
 num_features=20, num_epochs=50, feature_dim=256)
pseudo_scores = nn.Softmax(dim=1)(netC(pseudo_feats))
pseudo_maxprobs, pseudo_label_bank = torch.max(pseudo_scores, dim=1)
fea_bank = pseudo_feats.cpu()
fea_bank = torch.nn.functional.normalize(fea_bank)
score_bank = pseudo_scores
label_bank = pseudo_label_bank.cpu()
optimizer = optim.SGD(netC.parameters(), lr=5e-4, momentum=0.9, weight_decay=0, nesterov=True)

for i in range(len(loader)):
 inputs, labels = next(iter_test)
 # Get image and its strong augmentation
 image, image_s = inputs
 netFE.train()
 # get image features and its prediction vectors
 features = netFE(image)
 probs_image = nn.Softmax(dim=1)(netC(features))

 # get strong augmented image features and its prediction vectors
 features_s = netFE(image_s)
 probs_image_s = nn.Softmax(dim=1)(features_s)

 # compute sample-wise entropy
 ent_batch = Entropy(p_image)

 # get dynamic threshold to select low entropy samples
 ent_thresh = torch.mean(ent_batch)

 # Computer the attraction loss L_attr
 loss_aug = -torch.sum(probs_image * probs_image_s, dim=1)
 with torch.no_grad():
 f_norm = torch.nn.functional.normalize(features)
 score_near = torch.zeros(image.shape[0], K, class_num).cuda()
score_near_cls = torch.zeros(image.shape[0], K, class_num).cuda()
 for c in range(args.class_num):
 # get pseudo source features and current batch features belonging to class c
 src_cls_feats = torch.nn.functional.normalize(fea_bank[label_bank==c])
src_cls_scores = score_bank[label_bank==cls_idx]
curr_cls_feats = output_f_
pseudo_label.cpu()==cls_idx
curr_cls_probs = max_prob[pseudo_label.cpu()==cls_idx]

 # Retrieve top K pseudo source features for each test sample
 cos_sim = curr_cls_feats @ src_cls feats.T
 cls_dist_near, cls_idx_near = torch.topk(cls_dist, dim=1, largest=True, k=K + 1)
 cls_dist_near, cls_idx_near = cls_dist_near[:, 1:], cls_idx_near[:, 1:]
 cls_score_near = src_cls_scores[cls_idx_near]
score_near_cls[pseudo_label.cpu()==cls_idx] = cls_score_near

 # select pseudo source samples as positive for low entropy samples
 score_near[ent_batch<ent_thresh] = score_near_cls[ent_batch<ent_thresh]
 # self anchor the low entropy samples
 score_near[ent_batch>ent_thresh] = (probs_image[ent_batch>ent_thresh]).detach().clone().unsqueeze(1).expand(-1, args.K, -1)

 # repeat probs_image(of dimension batch x C) K times
 probs_image_un = probs_image.unsqueeze(1).expand(-1, args.K, -1)

 # Computer the dispersion loss L_attr
 loss_positive = -torch.sum(probs_image_un * score_near).sum(-1).sum(1)

 # Computer the attraction loss L_attr
 loss_negative = (dot_neg * mask.cuda()).sum(-1) # batch x K x C

 loss = torch.mean(loss_aug + loss_attr + loss_disp)
 optimizer.zero_grad()
 loss.backward()
 optimizer.step()
 netFE.eval()
 outputs = netC(netFE(image))
predictions = torch.max(outputs, dim=1)
return
Table 1. pSTarC ablation study: Importance of each loss term.

<table>
<thead>
<tr>
<th>L_{aug}</th>
<th>L_{attr}</th>
<th>L_{disp}</th>
<th>R→C</th>
<th>R→P</th>
<th>P→C</th>
<th>P→R</th>
<th>C→S</th>
<th>S→P</th>
<th>R→R</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td></td>
<td>57.1</td>
<td>66.6</td>
<td>57.1</td>
<td>47.8</td>
<td>54.7</td>
<td>54.1</td>
<td>74.0</td>
<td>58.8</td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td>✓</td>
<td>56.0</td>
<td>63.6</td>
<td>56.0</td>
<td>51.8</td>
<td>61.7</td>
<td>49.9</td>
<td>78.7</td>
<td>59.7</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td></td>
<td>60.1</td>
<td>67.3</td>
<td>59.6</td>
<td>55.0</td>
<td>64.8</td>
<td>54.6</td>
<td>79.8</td>
<td>63.0</td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>60.8</td>
<td>67.7</td>
<td>60.3</td>
<td>55.6</td>
<td>65.3</td>
<td>55.8</td>
<td>80.2</td>
<td>63.7</td>
</tr>
</tbody>
</table>

Table 2. Total accuracy (%) of AdaContrast on varying batch sizes.

<table>
<thead>
<tr>
<th>Method</th>
<th>R→C</th>
<th>R→P</th>
<th>P→C</th>
<th>P→R</th>
<th>C→S</th>
<th>S→P</th>
<th>R→R</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>44.9</td>
<td>54.7</td>
<td>45.8</td>
<td>44.1</td>
<td>52.1</td>
<td>42.2</td>
<td>66.9</td>
<td>50.1</td>
</tr>
<tr>
<td>16</td>
<td>54.4</td>
<td>62.8</td>
<td>54.6</td>
<td>49.6</td>
<td>59.3</td>
<td>49.3</td>
<td>75.2</td>
<td>57.9</td>
</tr>
<tr>
<td>32</td>
<td>57.8</td>
<td>65.4</td>
<td>58.1</td>
<td>52.0</td>
<td>61.9</td>
<td>52.9</td>
<td>77.6</td>
<td>60.8</td>
</tr>
<tr>
<td>64</td>
<td>60.0</td>
<td>66.9</td>
<td>59.7</td>
<td>53.6</td>
<td>63.7</td>
<td>54.3</td>
<td>78.6</td>
<td>62.4</td>
</tr>
<tr>
<td>128</td>
<td>60.1</td>
<td>67.1</td>
<td>60.2</td>
<td>54.4</td>
<td>64.2</td>
<td>54.3</td>
<td>78.7</td>
<td>62.4</td>
</tr>
</tbody>
</table>

Table 3. Total accuracy (%) of pSTarC on varying batch sizes.

<table>
<thead>
<tr>
<th>Method</th>
<th>R→C</th>
<th>R→P</th>
<th>P→C</th>
<th>P→R</th>
<th>C→S</th>
<th>S→P</th>
<th>R→R</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>53.5</td>
<td>62.6</td>
<td>51.2</td>
<td>41.2</td>
<td>54.1</td>
<td>46.2</td>
<td>69.9</td>
<td>54.1</td>
</tr>
<tr>
<td>16</td>
<td>56.5</td>
<td>65.7</td>
<td>56.2</td>
<td>49.6</td>
<td>59.8</td>
<td>51.4</td>
<td>75.5</td>
<td>59.2</td>
</tr>
<tr>
<td>32</td>
<td>59.4</td>
<td>67.2</td>
<td>58.0</td>
<td>51.1</td>
<td>61.9</td>
<td>54.5</td>
<td>77.0</td>
<td>61.3</td>
</tr>
<tr>
<td>64</td>
<td>61.6</td>
<td>68.9</td>
<td>60.5</td>
<td>54.7</td>
<td>64.3</td>
<td>57.0</td>
<td>79.4</td>
<td>63.8</td>
</tr>
<tr>
<td>128</td>
<td>60.8</td>
<td>67.7</td>
<td>60.3</td>
<td>55.6</td>
<td>65.3</td>
<td>55.8</td>
<td>80.2</td>
<td>63.7</td>
</tr>
</tbody>
</table>

4. Analysis on DomainNet-126

Here, we provide detailed analysis done on DomainNet-126. The paper results the average accuracy across the seven domains in Table 7 and 8 in the main paper. Here, we provide the results for each domain shift on performing ablation on loss components in Table 1. We also report detailed results of AdaContrast (Table 2) and pSTarC (Table 3) on varying batch sizes.

References