
Supplementary Material

1. PLCC Performace Comparison in the Data-
Efficient Setting

The Pearson’s Linear Correlation Coefficient (PLCC)
comparisons for our framework against other NR-IQA
methods corresponding to the table in the main paper are
provided in Tab. 6. We note that GRepQD outperforms
all other methods in most cases of the data-efficient set-
ting. However, on datasets such as LIVE [8] and CSIQ [4],
GRepQD still achieves competitive performance.

2. Analyzing GRepQ’s Zero-Shot Performance

We show the individual performances of the high and
low-level models in Tab. 7. We observe that the low-level
model is capable of capturing differing distortion levels
conditioned on the same content. This can be validated from
its higher performance compared to the high-level model on
the synthetically distorted LIVE [8] and CSIQ datasets. On
the other hand, the high-level model shows superior per-
formance on in-the-wild datasets such as CLIVE [1] and
KONIQ [3], validating its ability to capture content–based
quality information. When images are similar in content,
the low-level model is able to discriminate between levels of
distortions. However, when images differ in content (as in
the case of authentically distorted datasets), the high-level
model performs better, demonstrating that the high and low-
level models work in a complementary manner.

3. Analyzing GRepQ’s Supervised Perfor-
mance

To demonstrate the effectiveness of the learned features,
we also show the performance of the high and low-level fea-
tures in a fully supervised setting. The features from both
models are concatenated and then regressed with MOS us-
ing support vector regression. We use 80 − 20 train-test
splits on the KonIQ and CLIVE datasets and report the me-
dian results over 100 runs each in Tab. 8. GRepQD performs
the best and second-best among existing NR-IQA methods,
indicating that the learned representations are good even in
the fully supervised setting.

Figure 7. Analyzing the effect of separability between higher and
lower quality groups of the high-level model.

4. Runtime Analysis
We show the evaluation times of GRepQZ along with

other zero-shot benchmark algorithms for a 500 × 500 im-
age in Fig. 8. We report the average times taken for 100 im-
ages. CNN-based methods are tested using an Nvidia RTX
2080Ti graphics card and an Intel(R) Core(TM) i7-9700F
CPU.

5. Group Separability Analysis of High-Level
Representations

While training the high-level feature encoder, every
batch of images is divided into two groups based on their
proximity to the two text prompt embeddings. Choosing
the right group size is essential based on the number of im-
ages present in a batch of images. Two aspects are crucial
for group contrastive learning to be beneficial based on text-
prompt pairings: (1) The groups must be sufficiently sepa-
rated in terms of the similarity to the prompt embeddings
and (2) The groups must contain a sufficient number of im-
ages so that each anchor image contains a balanced number
of positives within the group and negatives from the other
quality group.

We experiment by varying the separability of the groups,
parameterized by k. For a fixed batch size of N , the indi-
vidual group sizes can be measured as round(N/k). We
vary k in powers of 2 as k ∈ {21, · · · , 25}. For N = 128,
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Method CLIVE KONIQ CSIQ LIVE PIPAL
Labels 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200
TReS 0.702 0.776 0.813 0.740 0.748 0.824 0.820 0.863 0.915 0.916 0.948 0.960 0.177 0.370 0.515

Re-IQA 0.620 0.650 0.701 0.689 0.693 0.757 0.905 0.911 0.936 0.876 0.892 0.931 0.263 0.331 0.416
MANIQA 0.713 0.823 0.830 0.715 0.806 0.825 0.864 0.914 0.924 0.894 0.933 0.962 0.191 0.365 0.484
HyperIQA 0.689 0.755 0.806 0.650 0.758 0.807 0.851 0.869 0.935 0.903 0.922 0.931 0.138 0.325 0.403

DEIQT 0.695 0.739 0.818 0.670 0.707 0.778 0.828 0.889 0.944 0.916 0.942 0.957 0.334 0.412 0.423
LIQE 0.722 0.765 0.820 0.764 0.809 0.822 0.869 0.898 0.916 0.898 0.925 0.936 - - -

Resnet50 0.580 0.629 0.660 0.661 0.693 0.716 0.827 0.902 0.932 0.872 0.908 0.920 0.161 0.233 0.312
CLIP 0.676 0.739 0.758 0.749 0.790 0.802 0.881 0.913 0.744 0.891 0.924 0.942 0.266 0.313 0.374

CONTRIQUE 0.693 0.736 0.777 0.743 0.801 0.832 0.821 0.944 0.957 0.892 0.922 0.944 0.380 0.447 0.501
Re-IQA 0.620 0.650 0.701 0.689 0.693 0.757 0.905 0.911 0.936 0.876 0.892 0.931 0.263 0.331 0.416

GRepQD (LL) 0.542 0.581 0.639 0.578 0.618 0.654 0.817 0.831 0.853 0.867 0.884 0.886 0.410 0.413 0.439
GRepQD (HL) 0.748 0.790 0.822 0.789 0.811 0.834 0.886 0.918 0.945 0.907 0.931 0.949 0.413 0.417 0.440

GRepQD 0.772 0.798 0.835 0.793 0.816 0.840 0.896 0.927 0.947 0.929 0.936 0.957 0.506 0.537 0.571

Table 6. PLCC performance comparison of GRepQD with other NR-IQA methods trained using few labels on various IQA databases.

Model CLIVE KonIQ CSIQ LIVE PIPAL
GRepQ (LL) 0.502 0.692 0.711 0.784 0.394
GRepQ (HL) 0.735 0.738 0.647 0.581 0.398

GRepQZ 0.740 0.768 0.693 0.741 0.436

Table 7. Performance comparison of the high and low-level mod-
els in the zero-shot setting.

NR-IQA CLIVE KonIQ
BRISQUE [6] 0.608 0.665
DB-CNN [11] 0.851 0.875
HyperIQA [9] 0.859 0.906

CONTRIQUE [5] 0.845 0.894
TReS [2] 0.846 0.914

Re-IQA [7] 0.840 0.914
GRepQD 0.864 0.909

Table 8. SRCC performance of NR-IQA methods on KonIQ-10K
and CLIVE databases. The best and second-best performing meth-
ods are bolded and emphasized, respectively.

the corresponding group sizes are 64, 32, · · · , 4. As k in-
creases, we identify smaller groups that are more similar
to the respective text-prompt embeddings with better sep-
aration. From Fig. 7, we observe that a large group size
(smaller k) is not favorable because they are not sufficiently
distinguishable in terms of quality, necessitating a minimum
separation between the groups. We observe that the perfor-
mance is fairly stable for k = 4, 8, 16. However, as k in-
creases further, the group sizes become extremely small for
effective group contrastive learning.

6. Impact of Group Contrastive Learning With
Respect to Choice of Text Prompts

We show that our contrastive learning over groups
based on perceptually relevant text prompts offers bet-

Figure 8. Runtime analysis.

ter performance than a zero-shot application of CLIP
(CLIP-IQA) irrespective of the choice of the prompts.
We experiment with different text prompt pairs: [‘a
good photo.’, ‘a bad photo.’], [‘high
definition photo.’, ‘low definition
photo.’], [‘high quality photo.’, ‘low
quality photo.’], and [‘pristine photo.’,
‘blurry photo.’]. The choice of prompts is moti-
vated by CLIP-IQA [10]. The performance of the high-level
model using these prompts is illustrated in Tab. 9. Since we
consistently improve the performance of all prompt pairs,
our method can leverage future improvements in prompt
engineering to improve the performance of vision-language
models for IQA.
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