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1. Implementation details
1.1. Network architecture

Our network architecture resembles a typical multi-
modal I2I frameworks (e.g., [7, 11]) with modifications to
the decoder part of the generator to accommodate the pro-
posed GAN Residuals. Our network consists of a U-Net [9]
generator G and a style encoder ES . The generator G con-
sists of a content encoder EC and a decoder with skip con-
nections. Both the content and style encoders {EC , ES}
consist of 6 downsampling blocks, followed by a fully con-
nected layer that generates a 512-dimensional latent code.
Each downsampling block is a residual block borrowed
from [1], with replacing average-pooling with blur-pooling.
We use 64 feature maps at the first encoder layer and dou-
ble this number after each downsampling block with a max-
imum of 512 feature maps. The decoder network consists
of 6 upsampling blocks to form a U-Net with the content
encoder. The architecture of each decoder block is simi-
lar to that of StyleGAN [3], with skip connection with the
corresponding downsampling block from EC . The decoder
outputs 6 channels: 3 RGB channels for the low-frequency
reconstruction component ÎBrec and 3 channels for the GAN
Residual ÎBres. Both ÎBrec, Î

B
res are summed to form the fi-

nal combined output ÎB . During training, we also use a
discriminator network whose architecture we adapt from
from [4].

1.2. Training details

We train all of our experiments and the baselines on the
CelebAMask-HQ dataset [6] for approximately 200 epochs.
We follow [2] and use equalized learning rate in all of our
networks. We use an Adam optimizer [5] with β1 = 0, β2 =
0.999, and a learning rate of 0.001 for all networks. We lin-
early decay the learning rate by a factor of 10 during the
last epoch of training. Our training employs three losses.
First, a conditional adversarial loss Ladv where the condi-
tional input IA is concatenated to either the real/fake im-
ages IB/ÎB and fed to a discriminator network. Second,
we use a simple L1 loss as our reconstruction loss Lrec be-
tween our output ÎB and the ground truth IB . We use a
relative weight λrec = 30 as a relative weight between the
two losses. While the value of λrec was selected to bring the
two loss terms to a close value range, we found the training
not sensitive to the setting of this hyper-parameter. Finally,
we use an L2 regularization term on the style latent code zs

to encourage a compact latent space. For more implementa-
tion details, please refer to our code, which will be released
upon acceptance.

2. Standard Deviation of Spatial Noise
In addition to the examples shown in the main paper, we

add more examples of the standard deviation computed over
diverse generations for each output image. The results are
shown in Figure 1. As can be seen in the third row, the
highest variations occur in the high-frequency regions cor-
responding to hair, around eyes, lips, and nose.

3. VGG vs. L1 loss
We analyze the effect of using L1 vs. VGG loss for re-

construction in Table 1. L1 loss is consistent with low-freq
reconstruction and suits our decomposition of reconstructed
and GAN residual better. As can be seen from the table, L1
is better on the PSNR, SSIM and L1 metrics. This can be
attributed to the fact that L1 enforces pixel-wise reconstruc-
tion and these metrics mostly focus on that. VGG on the
other hand is a perceptual loss like LPIPS so it works better
for the LPIPS metric. Also while FID is better for VGG, we
visually observe it has more artifacts compared to L1.
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Figure 1. Examples of local stochastic variations. Top to bottom rows represent the input image, one sample output, the standard deviation
of each pixel over 20 different outputs of the same input, and the ground truth image respectively.
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Figure 2. Qualitative comparison with baselines on Edges2Handbags dataset.



Loss L1 ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓

L1 18.02 19.85 0.520 0.25 19.82
VGG 22.44 17.96 0.499 0.24 18.89

Table 1. Comparison between using L1 vs. VGG losses for super-
vising the reconstruction component ÎBrec.

4. Style transfer
In Figure 3, we show that the network is also capable

of performing style transfer. To generate these samples we
generate every possible pair of translated images for 10 sub-
jects using the images and corresponding label maps. As
shown in the figure, the network is able to use the style from
one image and label maps from another to synthesize real-
istic output in most cases.

5. Qualitative results
In Figure 4 and Figure 5, we show results for qualita-

tive comparison with [8, 10] at a 512 × 512 resolution on
the CelebAHQ-Mask dataset. We chose these two base-
lines to compare to as they were the best performing base-
lines at 256 × 256 resolution. Also in Figure 2 we show
comparisons with the same two baselines [8, 10] on the
Edges2Handbags dataset which is at 256 × 256. It can
be clearly seen that our method generates the most realis-
tic outputs which better matches the ground truth.

6. GAN Residuals
In Figure 6, we show examples of the outputs generated

by our method. As reported in the paper, the reconstructed
image encodes most of the structure and content of the im-
age while the GAN residual captures the high frequency de-
tails. Combining both of them gives a realistic translation
output which is close in appearance to the ground truth.



Figure 3. Examples of style transfer by using input label maps and style images from 10 different subjects.
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Figure 4. Qualitative comparisons with baselines at 512× 512 resolution.
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Figure 5. Qualitative comparisons with baselines at 512× 512 resolution.
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Figure 6. Examples of the different outputs of our method along with the input label map and ground truth image.
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