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The supplemental material includes details of the con-
text vectors for the prompt learning approach (Section A)
and reports the number of cases where the prompts PWD
and PWS cannot be extracted (Section B). Furthermore, the
annotation process for the novel Event Instances dataset
(Section C) is described. Section D provides a compari-
son of different aggregation methods for the prompt ensem-
ble technique and Section E compares the supervised ap-
proaches. Finally, we report the top-3 and top-5 accuracy
results in Section F.

A. Context Vector Details for Prompt Learning
We describe our prompt learning technique [5] for few-

shot event classification in Section 3.2.2 of the paper. There
are different ways to select proper context vectors for tun-
ing. We experiment different context lengths (4 vs 16), the
position of the class label (front, middle, end), and the ini-
tialization method (PWD, PWS, random). As shown in Ta-
ble 1, a longer context length obtains better performance
for all different initialization prompts. Regarding the posi-
tion of the class label, we achieved almost identical results
and use front for the experiments in the paper.

B. Missing Knowledge Graph Information for
Prompt Creation

As mentioned in Section 3.2.1 of the paper, in some
cases either the Wikidata description for PWD or Wikipedia
summary for PWS cannot be extracted. While only 2/61
Wikipedia summaries are missing for the classes laborer
and car driving in WIDER [1], Wikidata descriptions are
missing for 1/21 class (2015 Russian air raids in Syria) in
the Rare Event Instances (RED) dataset [1] and for 43/184
classes in Event Instances:

• 16/26 descriptions for Election instances are missing

• 2/5 descriptions for Referendum instances are missing

• 12/79 descriptions for Protest instances are missing

• 13/63 descriptions for Political Campaign instances
are missing

As mentioned in the paper, the PCL prompts are used when
Wikidata descriptions are missing and the prompt “This
is a photo of a [class].” is used for classes with missing
Wikipedia summaries.

C. Annotation Process of the Event Instances
Dataset

We introduced the novel Event Instances dataset of im-
ages for evaluation on fine-grained events in Section 4.2.1.
In this context, to verify whether the downloaded images
represent the corresponding instance, we performed a man-
ual verification process. To this end, one of the co-authors
had to validate whether an image corresponds to the pro-
vided event label. Since it is challenging to verify the rele-
vance of an image to the corresponding fine-grained event
(e.g., 2018 European drought and heat wave) the co-author
was instructed to employ two different methods. In the first
method, for every individual event instance, the meta in-
formation (e.g., date and location) of images of the corre-
sponding Wikidata Web page were considered to verify if
they match the provided event instance label. In the second
approach, the co-author had to search for similar images
using external resources such as news Web pages and deter-
mine their visual similarity to the images in the dataset. The
final data statistics from the manual annotation process can
be found in Table 1 of the paper.

D. Comparison of the Aggregation Methods
for the Prompt Ensemble Approach

As mentioned in Section 3.2.3 of the paper, one of the
techniques that we use for prompting event labels is an en-
semble approach, where we combine the similarity scores
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Table 1. Comparison of different context lengths, initial-
ization methods, and positions of the class label for prompt
learning. Results are reported for the best prompt ensemble
SPL,PST,PWD,PWS on the Event Instances test set.

Len. Class Pos. Random PWD PWS
4 front 64.55 64.48 64.9
16 front 66.00 65.81 66.01
16 middle 65.99 65.09 66.12
16 end 65.87 66.03 65.87
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Figure 1. Comparison between max and mean aggregation meth-
ods for the prompt ensemble technique (SPL,PST,PWD,PWS)
introduced in Section 3.2.3 of the paper.

obtained from the individual prompts. To aggregate the
similarity scores, we use max and mean operations. A
comparison of these two approaches is presented in Fig. 1.
As shown for all the six test datasets, the mean operation
is superior to the max operation considerably. The Event
Instances dataset particularly demonstrates this, where the
hard prompts like PWD and PWS have difficulty differentiat-
ing event instances, even if they yield high similarity scores
(refer to Table 2 of the paper). Thus, it is more advantageous
to give equal importance to all prompts when making the fi-
nal prediction, rather than solely depending on the prompt
with the highest similarity score. For future direction, we
could explore improved weighting methods or investigate
automatic learning of such schemes.

E. Supervised Learning based on SVM
We introduced the supervised baseline Linear probe

in Section 4.2.3 of the paper. We also experimented with an
SVM approach. In general, we follow the same training pro-
cedure as described in the paper. We perform a grid search
to find the best regularization and gamma values and select
the best model based on the top-1 accuracy on the validation

set. We repeat the training using the same three training and
validation sets. The evaluation scores on the test sets are av-
eraged for the three resulting models.

As shown in Table 2, the Linear probe approach
outperforms SVM regardless of the number of training sam-
ples per class. Same as Linear probe, the SVM ap-
proach also achieves better results than state-of-the-art ap-
proaches trained on large dataset by using only 30 number
of images.

F. Results based on Top-3 and Top-5 Accuracy
The top-3 and top-5 accuracy are presented in Tables 3

and 4 for different test sets and approaches. The results
confirmed the findings reported in Section 4.3 of the pa-
per and show that our proposed approaches perform sig-
nificantly better than the state-of-the-art while using much
fewer images for training.
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Table 2. Comparison of supervised methods SVM and Linear probe based on top-1 accuracy using different number of samples per
class (n). Two types of backbones are used: (1) The CLIP-WIT pre-trained on the WIT dataset [3]; (2) The CLIP-MMG fine-tuned on the
MMG-News dataset [4].

Approach n Backbone VisE-Bing VisE-Wiki RED WIDER SocEID Event Instances
Linear probe 5 CLIP-WIT 68.73 57.04 69.70 46.91 89.18 54.49
Linear probe 5 CLIP-MMG 68.27 55.96 70.42 46.52 88.04 54.01
SVM 5 CLIP-WIT 67.68 55.28 67.72 45.47 88.74 53.66
SVM 5 CLIP-MMG 66.88 55.29 68.78 45.38 87.05 53.60
Linear probe 30 CLIP-WIT 82.78 66.75 81.78 59.48 92.83 72.26
Linear probe 30 CLIP-MMG 81.91 66.27 81.63 58.88 92.14 71.57
SVM 30 CLIP-WIT 82.60 65.55 81.50 59.14 92.21 71.58
SVM 30 CLIP-MMG 82.08 65.52 81.38 58.50 92.49 71.35
COcos

γ [2] all 81.90 63.50 80.90 49.70 91.50 –
Event concepts [1] all – – 77.60 78.60 85.40 –

Table 3. Comparison of different approaches based on top-3 accuracy using different number of samples per class (n). Two types of
backbones are used: (1) The CLIP-WIT pre-trained on the WIT dataset [3]; (2) The CLIP-MMG fine-tuned on the MMG-News dataset [4].

Approach n Backbone VisE-Bing VisE-Wiki RED WIDER SocEID Event Instances
PCL 0 CLIP-WIT 90.72 76.60 89.91 68.85 97.92 52.13
PST 0 CLIP-WIT 92.84 79.60 89.77 70.79 98.33 53.66
PWD 0 CLIP-WIT 91.29 78.89 91.22 67.54 96.02 57.36
PWS 0 CLIP-WIT 90.18 78.84 89.58 65.00 97.59 53.84
PWD,PWS 0 CLIP-WIT 92.98 81.15 91.08 69.12 98.01 57.84
PST,PWD,PWS 0 CLIP-WIT 93.59 81.90 91.13 70.95 98.24 57.48
PCL,PST,PWD,PWS 0 CLIP-WIT 93.59 82.77 91.13 71.68 98.38 56.52
PCL,PST,PWD,PWS 0 CLIP-MMG 92.77 81.76 91.74 71.00 97.59 54.02
SPL 5 CLIP-WIT 82.32 70.66 82.85 61.37 95.95 67.53
SPL,PST 5 CLIP-WIT 91.11 79.12 90.27 71.49 98.09 74.82
SPL,PST,PWD,PWS 5 CLIP-WIT 94.00 82.92 91.86 74.30 98.58 73.93
SPL,PST,PWD,PWS 5 CLIP-MMG 93.43 82.83 92.60 73.22 98.10 69.34
Linear probe 5 CLIP-WIT 85.03 73.94 87.18 65.60 97.42 71.23
Linear probe 5 CLIP-MMG 84.44 72.83 87.23 65.29 97.02 71.41
SPL 30 CLIP-WIT 92.16 77.18 92.77 73.84 98.07 83.60
SPL,PST 30 CLIP-WIT 94.58 81.82 94.49 77.95 98.72 86.09
SPL,PST,PWD,PWS 30 CLIP-WIT 95.30 83.84 94.27 77.58 98.96 82.98
SPL,PST,PWD,PWS 30 CLIP-MMG 94.34 83.40 94.41 75.59 98.58 76.96
Linear probe 30 CLIP-WIT 94.34 81.2 94.04 78.11 98.80 84.54
Linear probe 30 CLIP-MMG 93.76 80.74 93.84 77.71 98.49 84.48
COcos

γ [2] 90.80 74.30 – – – –
Event concepts [1] – – – – – –



Table 4. Comparison of different approaches based on top-5 accuracy using different number of samples per class (n). Two types of
backbones are used: (1) The CLIP-WIT pre-trained on the WIT dataset [3]; (2) The CLIP-MMG fine-tuned on the MMG-News dataset [4].

Approach n Backbone VisE-Bing VisE-Wiki RED WIDER SocEID Event Instances
PCL 0 CLIP-WIT 94.53 82.26 94.27 76.00 99.23 61.08
PST 0 CLIP-WIT 95.72 84.48 93.66 77.46 99.63 61.65
PWD 0 CLIP-WIT 95.11 84.79 95.54 74.64 98.72 67.00
PWS 0 CLIP-WIT 93.99 83.66 94.13 72.44 99.42 63.09
PWD,PWS 0 CLIP-WIT 96.15 85.92 95.45 75.97 99.46 67.90
PST,PWD,PWS 0 CLIP-WIT 96.33 86.41 95.21 77.84 99.61 67.03
PCL,PST,PWD,PWS 0 CLIP-WIT 96.37 86.19 95.21 78.55 99.62 66.43
PCL,PST,PWD,PWS 0 CLIP-MMG 96.22 86.31 95.49 77.50 99.31 64.20
SPL 5 CLIP-WIT 87.14 76.04 88.95 68.72 98.68 74.24
SPL,PST 5 CLIP-WIT 94.32 83.74 94.63 78.03 99.45 81.57
SPL,PST,PWD,PWS 5 CLIP-WIT 96.76 86.99 96.06 80.84 99.65 81.61
SPL,PST,PWD,PWS 5 CLIP-MMG 96.91 87.13 96.18 79.89 99.50 77.67
Linear probe 5 CLIP-WIT 89.74 79.44 92.46 73.17 99.23 78.27
Linear probe 5 CLIP-MMG 89.31 78.70 92.07 72.75 98.97 78.76
SPL 30 CLIP-WIT 95.32 81.47 96.09 80.25 99.40 87.72
SPL,PST 30 CLIP-WIT 97.10 85.77 97.33 83.84 99.63 90.38
SPL,PST,PWD,PWS 30 CLIP-WIT 97.97 87.85 97.39 83.70 99.72 88.20
SPL,PST,PWD,PWS 30 CLIP-MMG 97.39 87.77 96.99 81.89 99.62 83.36
Linear probe 30 CLIP-WIT 97.07 85.36 97.21 84.15 99.68 89.05
Linear probe 30 CLIP-MMG 96.80 85.34 97.06 83.74 99.64 88.86
COcos

γ [2] 93.20 78.80 – – – –
Event concepts [1] – – – – – –
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