
Figure 10. Detailed breakdown of performance over tasks on
Imagenet-100. Fine-grained accuracy for every additional task
across Kaizen and CaSSLe, with a fixed SSL backbone.

A. Additional results
In addition to the results discussed in section 5.4,

Figure 11 displays the performance of the models on
each individual task in the continual learning process on
CIFAR-100, using different self-supervised learning meth-
ods (BYOL [16], SimCLR [8], ViCReg [1]) for training and
knowledge distillation, and different distillation strategies
(Kaizen, No Distill and CaSSLe). We can again observe
that our proposal is able to retain knowledge better com-
pared to other methods. The No Distill retains the least
amount of knowledge where the performance drops to al-
most zero after learning a new task. We can make simi-
lar observations on ImageNet-100 (see Figure 10), where
our method is generally more able to mitigate forgetting,
although this effect is more apparent when using SimCLR
than BYOL.

B. Hyperparameters
In our experiments, we retained the hyperparameters for

each self-supervised learning method (BYOL [16], Sim-
CLR [8], ViCReg [1]), MoCoV2+ [9]) as they were orig-
inally proposed in their corresponding works. This was
shown to reduce interference [14] and used to make sure
that the comparison is not a result of hyperparameter tun-
ing. In the loss function (Equation 1), it is possible to use a
different weight for each loss function term, to enhance or
reduce the supervisory signal from different objectives. A

Algorithm 1 Algorithm of Kaizen.

# aug_f: stochastic augmentation function

# f_o: Current Feature Extractor

# f_t: Momentum Feature Extractor (if applicable)

# f_p: Previous Feature Extractor

# h_o: Predictor for Knowledge Distillation

# h_t: Predictor for SSL

# g_t: Current Classifier

# g_p: Previous Classifier

# loss_ssl: self-supervised learning loss

# loss_ce: cross-entropy loss

def train_step(x, y):

# augmented views of input

x1, x2 = aug_f(x), aug_f(x)

# pass through feature extractors

z_o = f_o(x1)

z_t = f_t(x2)

z_p = f_p(x1)

# pass embeddings through classifiers

c_t = g_t(z_t.detach()) # detach stops gradients

backpropagation

c_p = g_p(z_p)

# pass embeddings through predictors

p_o = h_o(z_o)

p_t = h_t(z_o)

# knowledge distillation for feature extractor

kd_fe = loss_ssl(p_o, z_p.detach())

# knowledge distillation for classifier

kd_c = loss_ce(c_t, c_p.detach())

# supervised training for current task

ct_c = loss_ce(c_t, y)

# SSL training

ct_fe = loss_ssl(p_t, z_t)

# Overall loss

loss = kd_fe + kd_c + ct_c + ct_fe

return loss

weighting factor of 2 was empirically chosen for the knowl-
edge distillation loss for the classifier while others are kept
as 1. Since the replay dataset is much smaller in size com-
pared to the dataset of the current task, we ensure that each
batch that the models are trained on contains at least 32 sam-
ples from the replay dataset. The replay dataset is reset as
many times as necessary in order to match the number of
batches in the data of the current task.

C. Algorithm
The algorithm of our training pipeline is provided in this

section (Algorithm 1) to accompany the descriptions given
in Section 3.2 and illustrated in Figure 3 using a PyTorch-
like syntax, which outlines the implementation of Kaizen.



Figure 11. Detailed breakdown of performance over tasks on CIFAR-100. Fine-grained accuracy for every additional task across
Kaizen and CaSSLe, with a fixed SSL backbone.


