RGB-D Mapping and Tracking in a Plenoxel Radiance Field

Andreas L. Teigen^{1*}

Yeonsoo Park^{2*} Annette Stahl¹

Rudolf Mester¹

¹Norwegian University of Science and Technology (NTNU), Trondheim, Norway ²Mobiltech, Seoul, Republic of Korea

andreas.l.teigen@ntnu.no

yspark@mobiltech.io

APPENDIX

Figure 1. Average ATE error on Replica subsets regarding to the tracking speed. Standard deviation of error along 5 sequences are displayed in dotted line.

Appendix A

We explain the derivative of a tri-linear interpolated grid function with respect to a sample location as is present in equations 8 and 9 from the paper Let $p_i = (x_i, y_i, z_i)$ be the sample location and let the function f(p) represent the tri-linearly interpolated grid function (Either \vec{c} or $\vec{\sigma}$ in our case) where $[v_{000}, ..., v_{111}]$ are the eight closest vertices of p_i . Further let (x_0, y_0, z_0) represent the lattice points below, and (x_1, y_1, z_1) represent the lattice points above the location (x_i, y_i, z_i) . The trilinear interpolation can then be described by the equation: $f(p_i) = f(x, y, z) = v_i$

 $\approx a_0 + a_1 x_i + a_2 y_i + a_3 z_i + a_4 x y_i + a_5 x_i z_i + a_6 y_i z_i + a_7 x_i y_i z_i$ where

[1	x_0	y_0	z_0	$x_{0}y_{0}$	$x_0 z_0$	$y_0 z_0$	$x_0y_0z_0$	$\begin{bmatrix} a_0 \end{bmatrix}$		v_{000}
1	x_1	y_0	z_0	x_1y_0	$x_1 z_0$	$y_0 z_0$	$x_1 y_0 z_0$	a_1	=	v_{001}
1	x_0	y_1	z_0	x_0y_1	$x_0 z_0$	$y_1 z_0$	$x_0 y_1 z_0$	a_2		v ₀₁₀
1	x_1	y_1	z_0	x_1y_1	$x_1 z_0$	$y_1 z_0$	$x_1 y_1 z_0$	a_3		<i>v</i> ₀₁₁
1	x_0	y_0	z_1	x_0y_0	$x_0 z_1$	$y_0 z_1$	$x_0 y_0 z_1$	a_4		v_{100}
1	x_1	y_0	z_1	x_1y_0	$x_1 z_1$	$y_1 z_1$	$x_1 y_0 z_1$	a_5		v_{101}
1	x_0	y_1	z_1	x_0y_1	$x_0 z_1$	$y_1 z_1$	$x_0 y_1 z_1$	a_6		v_{110}
[1	x_1	y_1	z_1	x_1y_1	$x_1 z_1$	$y_1 z_1$	$x_1y_1z_1$	$\lfloor a_7 \rfloor$		v_{111}
									(1)	

As all voxels are locally independent we can treat the lower lattice points (x_0, y_0, z_0) as (0, 0, 0) greatly simplifying the equations.

Then if the partial derivatives of these equations are computed with respect to $p_i = (x_i, y_i, z_i)$ we get:

$$\frac{\partial v_i}{\partial x_i} = a_1 + a_4 y_i + a_5 z_i + a_7 y_i z_i$$

$$\frac{\partial v_i}{\partial y_i} = a_2 + a_4 x_i + a_6 z_i + a_7 x_i z_i$$

$$\frac{\partial v_i}{\partial z_i} = a_3 + a_5 x_i + a_6 y_i + a_7 x_i y_i$$
(2)

Appendix B

Fig. 1 displays the speed-accuracy trade-off curves obtained by testing different settings across the eight sequences from the Replica dataset. Comparing the result of NICE-SLAM in table 2, it indicates that even if we reduce the allotted tracking time of our method to just 0.075s per frame, our method still outperforms NICE-SLAMs results attained using double the computation time.

^{*}Authors contributed equally to this work.