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1. Grounding on the Digits dataset
As in previous multimodal learning works, we grounded

the bimodal setup via the Digits dataset.

Digits [15] combines datasets of images that represent
the same digit in different styles (i.e., MNIST and SVHN),
for the task of digits classification. Input images (size
32×32) on both modalities are paired and assigned a digits
label from 0 to 9 (J = 10). VQVAE contains 256 codes of
size D = 32. Training is run for 10 epoch on the train-test
splits defined in [7].

Table 1 shows the quantitative evaluation on the Digits
dataset. A large ratio of the complementary features is made
up of MNIST (m = 1) codes, while most of the SVHN
(m = 2) codes remain contradictory. This is reasonable
since MNIST contains all information required to classify a
digit, whereas SVHN images contain lots of unrelated infor-
mation such as background and colors. Thus, their ζ value
is very low, as one modality does not add much useful infor-
mation to the other. These results show the difference be-
tween previous shared/private spaces and our complemen-
tary/contradictory disentanglement: while multimodal gen-
eration tasks leverage redundant information (e.g., the color
red and the word “red”) to generate their shared space, in
classification tasks, redundant features are not considered
complementary.

As for the qualitative evaluation, Fig. 1 (a) shows the
reconstructions of the input modalities, for all the fea-
tures ψ(ẑmi |θ) = x̃mi , the complementary features ψ(ẑmi ⊙
ωm|θ), and the contradictory features ψ(ẑmi ⊙ ωm|θ). We
used a colored version of MNIST for a clearer visualization.
The complementary space in MNIST shows lines represent-
ing the numbers, but features such as line thickness or color
variations are not contained, as they are not helpful to solve
the task. SVHN modality (b) does not contain complemen-
tary features, as the MNIST modality is enough to solve the
task. The missing complementary features can be found on
the reconstructed contradictory features.
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Figure 1. All features, complementary features and contradictory
features reconstructed with the learned decoder for modalities (a)
MNIST and (b) SVHN in Digits.

This additional experiments aim to show the concep-
tual differences between our methodology and that of
the aforementioned previous works. Methods based on
Shared/Private latent spaces [6, 7, 10] separate MNIST and
SVHN’s content and style features in the shared and private
space respectively, while ours only retains MNIST’s content
features as complementary and leaves style and the whole
SVHN modality as contradictory. Also, in [4], it is unclear
if interferring color features are still present or not after ap-
plying their method, while this can be clearly confirmed in
ours.

2. Dataset details

CREMA-D [14] is an image-audio dataset for emotion
recognition. It contains 7442 short videos of 91 actors of
different nationalities reciting a sentence with emotional
content, for the task of emotion recognition (J = 6): angry,
happy, sad, neutral, disgust, fear. For the visual, we ran-
domly sample a frame from the video and crop the 128×128
region where the face is located. The audio signal is trans-
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Table 1. Task accuracy, latent disentanglement and modal complementarity for the Digits dataset.

Dataset Recons. err. 1 Recons. err. 2 Accuracy contr1 contr2 compl1 compl2 ζ
Digits 0.01 (MNIST) 0.01 (SVHN) 99.24% 26.56% 48.44% 23.44% 1.56% 0.06

formed to a 256×256 Mel-Spectrogram using librosa [8], as
in [9]. The train-validation-test splits are set as in [9]. Train-
ing is run for 100 epochs and the model with the best clas-
sification accuracy on the validation set is saved for evalua-
tion.

PennAction [17] is an image-pose dataset for pose
recognition. It contains videos for different human ac-
tions (J = 15) and the positions in image coordinates of
13 body joints, for the task of action recognition. Simi-
lar to CREMA-D, we sample and rescale video frames to
256×256. Pose sequences are subsampled/zero-padded to
a common length of 100 frames. The train/test splits are
those defined in the dataset and used in [1], and training is
run for 200 epochs.

NYUv2 [11] is an color-depth dataset for semantic seg-
mentation. It contains 795 pairs of color and depth images
for training and 655 for testing. We rescale the color, depth
and semantic label images to 256×256. Training is run for
200 epoch with a learning rate of 0.0001 and cosine-decay
as in [20]. We solve semantic segmentation as a pixel-wise
classification task for the label image, so we keep the same
task loss, but we replace the classifier of the task-solver by
the decoder architecture used in the VQVAEs (changing the
number of output classes).

RML [14] is a video dataset for emotion recognition. It
contains 720 samples from 8 actors of different nationalities
reciting a sentence with six emotion labels: angry, disgust,
fear, happy, sad, surprise.

3. Architectural details of CM-VQVAE
The main text contains the general details of our pro-

posed method, CM-VQVAE, which consists on:

• Modality-specific VQVAE modules, with an encoder
φ, a decoder ψ, and a codebook C.

• A Task-solver module, with a mask ω and a classifier
γ.

As in the comparison method [9], the architecture of φ, ψ
and γ is based on ResNet18, and VQVAEs were adapted
from the public implementation of VQVAE1. Tab. 2 details
the hyperparameters of the convolutional and residual lay-
ers, as well as the codebook for each dataset.

We run our model in a GPU NVIDIA A100-SXM
(CUDA Version: 11.4). Further architectural details can be
found in our code2.

1https://github.com/zalandoresearch/pytorch-vq-vae
2https://github.com/CyberAgentAILab/CM-VQVAE
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Figure 2. Multimodal semantic segmentation results: (a) Color
recons., (b) Depth recons., (c) Segmentations and (d) Ground truth
in NYUv2.
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Figure 3. All features, complementary features and contradictory
features reconstructed with the learned decoder for modalities (a)
color and (b) depth in NYUv2.

4. Qualitative evaluation of NYUv2

Figure 2 shows some visual results of the semantic seg-
mentation task. Fig. 3 displays the reconstructions of the
feature spaces in the NYUv2 dataset, obtained as in Fig. 1.
As explained in the Discussion (Sec. 5 in the main text), the
features disentangled in the latent spaces does not necessar-
ily have to have a semantic meaning, and this dataset is an
example.



Table 2. Architectural details of CM-VQVAE for each dataset.

Dataset #channels
convolutions

#channels
residuals

#layers
residuals

Size of zmi
(H×W ×D)

#codes VQVAE
K

VQVAE
commit. cost

Batch size

CREMA-D 128 32 2 32× 32× 64 512 0.25 128
PennAction 128 32 2 32× 32× 64 512 0.25 128
NYUv2 128 32 2 32× 32× 64 512 0.25 8
Digits 64 12 1 16× 16× 32 256 0.25 128

Figure 4. Accuracy (left y axis) and mIoU (right y axis) vs.
t in CREMA-D (dashed blue), PennAction (dotted green) and
NYUv2 (red) datasets. Labels indicate complcolor / complaudio,
complcolor / complpose and complcolor / compldepth.

5. Comparison with SOTA architectures
Table 3 compares our method with other state-of-the-art

architectures for each task. Applying our proposed mul-
timodal learning method to a generic ResNet architecture
outperforms most approaches for all tasks. This compar-
ison is just a reference, as some methods use specific ar-
chitectures and learning curricula (e.g., Transformers, pre-
training, etc.), and similarly, our accuracy could be further
improved by changing the ResNet backbone.

6. Threshold t
The value of t was chosen empirically. Fig. 4 shows the

effect on the task performance when varying t. High ts en-
tail masking too many features from the start, which hinders
learning and interaction among modalities. On the other
hand, low ts result in not masking enough features. Both
cases converge consistently to a suboptimal disentangle-
ment in our experiments. Our method is not highly sensitive
to t values around the optimal range, but there is a signifi-
cant performance gap for extreme values of t. The reason is
that no masking or forcibly masking features is equivalent
to not applying our method (see ablation on Tab. 3 in the
main text). Note that, unlike other hyperparameters in our
method, t controls learning as e.g. the learning rate does,
and thus, unreasonable values can hinder the task perfor-
mance.

In addition, the same value t is used for all modalities,
since setting different ts would prevent multimodal interac-
tion during feature selection. The threshold t represents the
criterion to mask multimodal features altogether simultane-
ously. This allows selecting e.g. certain audio features over
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Figure 5. Evolution during training epochs (x-axis) of the sizes
complm (left y-axis) and complementarity ζ (right y-axis). In
CREMA-D (a), (green) is color and (blue) is audio. In PennAc-
tion (b), (green) is color and (blue) is pose. In NYUv2 (c), (green)
is color and (blue) is depth. In Digits (d), (green) is MNIST and
(blue) is SVHN. In all of them, (dotted-red) is ζ.

color features and viceversa. Moreover, different ts would
prevent ζ from measuring the contribution of one modality
over the other, as the criterion for selecting features would
be different. Instead, the mask weights are learnable so,
under the same criterion, the network decides if the weight
value for a certain modality feature should be over or below
t.

7. Complementarity measure

7.1. Complementarity during training

We monitor how complementarity evolves during train-
ing (Fig. 5). Initially, both modalities have complm = 50%
(i.e., contrm = 0%). In CREMA-D (a), both modalities
present a high complementarity, which increases as color
and audio features are optimized. In PennAction (b), color
features are rapidly discarded, which results in a low com-
plementarity since the beginning. In NYUv2 (c), comple-
mentarity increases very slowly due to the learning schema
of the dataset (i.e., low learning rate with cosine decay
scheduling in order to learn the more imbalanced classes).
In Digits (d), the first epochs relegate most of the irrele-



Table 3. Comparison with the related work.

CREMA-D Acc.(%)
Grad-Blend [13] 56.8

OGM-GE [9] 57.7
PMR [4] 61.1

Ours 65.32

PennAction Acc.(%)
HDM-BG [18] 93.4

C3D [2] 94.3
Transformer [1] 98.7

Ours 95.22

NYUv2 mIoU
HRNet-18 [12] 33.18
U-Net++ [19] 34.74
MaskSup [20] 38.54

Ours 38.66

vant features to the private space, including almost the en-
tire SVHN modality.

7.2. Complementarity in the related work

Some recent works calculate metrics that characterize
the processes involved in multimodal learning, in an attempt
to add further explainability. Here we provide a brief sur-
vey.

In [9], the interaction between two modalities during
training is studied using a discrepancy ratio between their
predictions on the classification task. In [3], to account
for the complementary information that different modali-
ties contribute to a contrastive learning task, inter-modality
scores are learned to weight modality-specific features.
Modal “relatedness” was introduced in [6], as a measure
of how close are the latent representations of the same se-
mantic concept for different modalities (e.g., an image and
a caption of a bird). This concept is more applicable to
generation tasks, but not necessarily to classification, where
different modalities usually represent different semantics.
In [5], informativeness is defined as the usefulness of indi-
vidual features and entire modalities to solve a given mul-
timodal task. It is calculated as learnable weights for each
feature on a medical table-data database. While defining a
“feature unit” in table data (i.e., cell values) is straightfor-
ward, in multimedia data (i.e., image pixels) is not trivial.
In [16], complementarity was defined as the information
that one modality supplements to other, and leveraged for
multimodal domain adaptation. Cross-modal information is
modeled between pairs of modalities via a gating operation
that weights the features of each modality. As we showed
in our experimental results, masking is more effective than
simply weighting. In [4], a metric to evaluate the degree of
imbalance between two-modalities in real-time is proposed.
They calculate the ratio between the Euclidean distance of
the each modality’s features within a batch and their respec-
tive class prototype. Although this gives an idea of the reg-
ularization imbalance between multimodal features, it still
does not allow quantifying the ratio of useful/irrelevant fea-
tures of each modality.

Note that each indicator is suitable for a different learn-
ing scenario, and comparing them side by side is not rea-
sonable.

8. Extension of our method to M > 2

A possible approach would be calculating a ζm for each
modality as: complm/

∑M
n=1,n̸=m compln. Also, it would

be necessary to determine if single complementarity would
be enough (e.g., visual-audio-text), or if additional pair-
wise complementarities should be calculated (e.g., visual-
audio, visual-text, audio-text).
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