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1. Data Generation

To perform the data generation, we use an open-
source tool1 to convert the 3D mesh semantic labels in
Matterport3D [2] into 194,400 pinhole images with se-
mantic labels. Then, every 18 semantic label pairs are
concatenated via a corresponding rotation-translation ma-
trix, yielding 10,800 panoramic semantic ground truth,
which is referred to as 360FV-Matterport by us. These
panoramic semantic images are originally annotated with
40 object categories. Because many of them are only
a small percentage (≪0.1%), we merges some uncom-
mon classes and maintains the 20 most common ob-
ject categories: wall, floor, chair, door, table,
picture, furniture, objects, window, sofa,
bed, sink, stairs, ceiling, toilet, mirror,
shower, bathtub, counter, and shelving. For
another front-view semantic segmentation dataset, Stan-
ford2D3D [1], we keep the original object classes: beam,
board, bookcase, ceiling, chair, clutter,
column, door, floor, sofa, table, wall, window.

For the presented 360BEV-Stanford dataset, we follow
the data split method of Fold-1 of the Stanford2D3D [1]
dataset. On the BEV dataset, we use the area1, area2,
area3, area4 and area6 as the training data for the proposed
360BEV task, and we use the area5a and area5b as the val-
idation set to evaluate the panoramic semantic mapping per-
formance of models. The results of training and evaluation
with the Fold-1 data split is similar the average scores which
are calculated by using three-fold cross-validation. Besides,
the validation set from Fold-1 is sufficient to evaluate the
model performance on panoramic semantic mapping.

For 360BEV-Matterport, we use a different data split
compared to Wijmans et al. [7]. Instead of using syn-
thetic simulators, all samples on our dataset are converted
from the real images and labels of Matterport3D [2] dataset,
where there are 86 unique floors on our dataset, including
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61 for training, 7 for validations, and 18 for testing.

2. More Quantitative Analysis
2.1. Results on Stanford2D3D

In Table 1, we present the per-class IoU results of
front-view semantic segmentation on the Stanford2D3D
dataset. The average (Avg.) scores are calculated with
three folds [1] of cross validation, where Fold-2 is the
most challenging split on the Stanford2D3D dataset. Com-
pared to previous state-of-the-art Trans4PASS [9], our pro-
posed 360Mapper achieves 47.97% mIoU in Fold-2 split.
Besides, our 360Mapper model has overall better perfor-
mance (54.34% in mIoU) in the average result calculated by
three folds evaluation, surpassing the previous Trans4PASS
model with +2.24% in mIoU. Furthermore, our model
achieves the highest scores in 11 of 13 categories, including
board, bookcase, ceiling, chair, clutter, door, floor, sofa,
table, wall, and window. Improvements in these categories
demonstrate the effectiveness of our 360Mapper model in
combating distortions of 360° front-view images by incor-
porating distortion-aware 360Attention.

2.2. Results on 360FV-Matterport

As shown in Table 2, we present the front-view semantic
segmentation results on the test set of 360FV-Matterport
dataset. We compare our approaches with SegFormer [8],
Trans4PASS [9], Trans4PASS+ [10], HoHoNet [6] with
RGB and RGB-D, where HoHoNet uses ResNet-101 as
backbone and the others use MiT-B2 as backbone. Com-
pared with the well-established existing work SegFormer,
our approach obtains a higher mIoU score with 43.16%,
having a performance improvement of +0.67% mIoU on
the test set. The test set is much more challenging than
the validation set of 360FV-Matterport dataset, the results
in Table 2 show the superiority of the proposed approach on
extracting the underlying cues for the proposed task.

Apart from that, per-class IoU scores on 360FV-
Matterport in Table 3. The performance of 360Mapper on
both test and validation sets are demonstrated. 360Mapper
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Table 1. Per-class results (360FV) on the Stanford2D3D dataset. The models are based on the MiT-B2 [8] backbone.
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Trans4PASS [9] Fold-1 53.30 00.40 69.50 62.20 82.80 58.50 34.30 21.90 44.90 91.20 40.80 57.70 74.80 54.20
Trans4PASS [9] Fold-2 45.70 12.50 46.90 32.60 82.30 64.70 37.50 20.10 42.70 86.60 17.70 45.20 70.30 35.10
Trans4PASS [9] Fold-3 57.20 21.40 65.40 58.30 80.20 55.80 41.90 28.60 76.30 88.60 45.40 58.80 59.30 63.60
Trans4PASS [9] Avg. 52.10 11.40 60.60 51.10 81.80 59.70 37.90 23.50 54.60 88.80 34.60 53.90 68.10 51.00

360Mapper Fold-1 56.46 00.57 74.61 65.03 83.96 62.41 40.27 18.72 42.22 93.31 53.86 65.90 76.18 58.84
360Mapper Fold-2 47.97 09.32 41.89 40.45 83.01 62.27 34.92 25.74 57.74 88.02 24.48 42.95 72.19 41.22
360Mapper Fold-3 58.60 08.05 74.32 61.05 81.05 63.29 44.44 4.64 76.56 90.91 57.28 62.52 64.96 72.77
360Mapper Avg. 54.34 05.98 63.61 55.51 82.67 62.66 39.88 16.37 58.84 90.75 45.21 57.12 71.11 57.61

Table 2. Panoramic semantic segmentation (360FV) on the
test set of 360FV-Matterport dataset.

Method Backbone Input mIoU(%)

HoHoNet [6] ResNet-101 RGB 40.22
HoHoNet [6] ResNet-101 RGB-D 41.23
Trans4PASS [9] MiT-B2 RGB 39.70
Trans4PASS+ [10] MiT-B2 RGB 40.41
SegFormer [8] MiT-B2 RGB 42.49
Ours MiT-B2 RGB 43.16

delivers 46.35% and 43.16% mIoU performance on valida-
tion and test sets of 360FV-Matterport dataset respectively.
For per-class IoUs, our model has better performance of
challenging class, e.g., sink with 25.12% and 28.24% on
validation and test sets, surpassing Trans4PASS+ [10] with
large margins. It notes that the small objects, e.g., furni-
ture, mirror, toilet on the test set, are still challenging for
both methods. Apart from these, our models have better
semantic segmentation results on 17 of 20 classes on the
360FV-Matterport dataset.

2.3. Results on 360BEV-Stanford

Per-class IoU scores on 360BEV-Stanford are shown
in Table 4. On the 360BEV task, 360Mapper can
achieve 45.78% score of mIoU, outperforming the previ-
ous Trans4Map [3] method with +9.7%. Specifically, our
360Mapper achieves per-class IoU with 93.33%, 42.52%,
59.14%, 5.06%, 62.66%, 39.75%, 5.48%, 38.74%,
97.76%, 48.92%, 76.76%, 45.86% and 24.89% for void,
board, bookcase, ceiling, chair, clutter, column, door, floor,
sofa, table, wall and window, respectively. Especially,
the challenging objects that appear thin lines in bird’s-eye
views, such as doors and walls, can be more stably rec-
ognized by our method, which improves both IoUs with
10.23%→38.74% and 29.56%→45.86%. The beam class

is not successfully recognized by both methods, because
this BEV mechanism directly ignores objects on the ceiling.
Different from the front-view semantic segmentation task,
the void class is included on the 360BEV task, because this
class can be used to indicate the invisible area on the BEV
semantic maps, which is important for the downstream task,
such as path planing.

2.4. Results on 360BEV-Matterport

The 360BEV results on the test set of 360BEV-
Matterport are demonstrated in Table 5. We further compare
our approach with three backbones, e.g., MiT-B0, MiT-B2
from SegFormer [8] and MSCA-B from SegNeXt [4] on the
test set of the 360BEV-Matterport for the panoramic seman-
tic mapping task. Methods based on intermediate projec-
tion show the most promising results compared with those
based on early projection and late projection. The result is
consistent compared with the ones demonstrated on the val-
idation set of 360BEV-Matterport dataset. 360Mapper still
delivers the state-of-the art results for the proposed 360BEV
task on the test set, indicating the effectiveness of the pro-
posed architecture. Especially, our 360Mapper with MiT-
B2 backbone (38.78%) can surpass Trans4Map with MiT-
B2 (31.08%) as well as the one with MiT-B4 (31.79%). Be-
sides, the proposed method based on MSCA-B backbone
achieves the best result with 40.27% in mIoU.

Per-class IoU scores on the 360BEV-Matterport dataset
are presented in Table 6. The performance of 360Mapper
under MiT-B2 from SegFormer [8] and MSCA-B from Seg-
NeXt [4] are included, which achieves promising perfor-
mance for the 360BEV task. Compared to Trans4Map [3],
our 360Mapper with the same MiT-B2 backbone can
achieve respective 44.32% and 38.78% in mIoU on the vali-
dation set and the test set. The void class is also included on
the 360BEV-Matterport dataset. Besides, if using a stronger
backbone, e.g., MSCA-B [4], our proposed mehods can



Table 3. Per-class results (360FV) on the 360FV-Matterport dataset.
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Trans4PASS+ [10] MiT-B2 val 42.60 63.37 79.11 39.13 40.31 32.76 35.99 30.96 31.52 37.52 44.01 63.17 20.60 41.76 77.55 40.71 24.27 23.73 58.34 34.31 32.90

360Mapper MiT-B2 val 46.35 64.12 83.14 45.75 44.98 37.96 41.08 32.26 35.07 40.61 48.69 69.80 25.12 47.80 80.15 45.96 28.70 22.31 60.05 38.64 34.82

Trans4PASS+ [10] MiT-B2 test 40.41 64.32 80.12 41.24 41.70 30.86 36.93 35.16 28.27 32.65 33.28 55.98 22.93 37.19 78.36 48.96 17.73 26.51 49.65 28.64 22.82

360Mapper MiT-B2 test 43.16 66.95 82.24 45.12 47.34 32.72 44.35 33.34 29.57 34.59 32.08 62.06 28.24 38.03 81.26 45.47 23.61 29.01 55.44 28.58 23.24

Table 4. Per-class results (360BEV) on the 360BEV-Stanford2D3D dataset.
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Trans4Map [3] MiT-B2 36.08 64.17 0.00 28.10 52.96 0.45 52.30 34.71 6.40 10.23 92.18 44.29 68.22 29.56 21.44
360Mapper MiT-B2 45.78 93.33 0.00 42.52 59.14 5.06 62.66 39.75 5.48 38.74 97.76 48.92 76.76 45.86 24.89

Table 5. Panoramic semantic mapping (360BEV) on the test
set of 360BEV-Matterport dataset.

Method Backbone Acc mRecall mPrecision mIoU

(1)Early projection: Proj. → Enc. → Seg.

SegFormer [8] MiT-B2 69.72 35.28 40.41 24.04
SegNeXt [4] MSCA-B 69.99 36.25 41.96 25.22

(2) Late projection: Enc. → Seg. → Proj.

HoHoNet [6] ResNet101 62.89 35.18 39.54 22.01
Trans4PASS [9] MiT-B2 53.50 29.35 33.53 16.53
Trans4PASS+ [10] MiT-B2 57.24 30.639 34.49 17.72
SegFormer [8] MiT-B2 62.91 35.35 39.64 22.02

(3) Intermediate projection: Enc. → Proj. → Seg.

BEVFormer [5] MiT-B2 72.04 36.69 47.90 27.46
Trans4Map [3] MiT-B0 71.78 38.27 43.77 26.52
Trans4Map [3] MiT-B2 72.94 45.45 47.03 31.08
Trans4Map [3] MiT-B4 73.60 44.33 49.91 31.79
Ours MiT-B0 76.02 43.11 50.41 31.35 (+4.83)
Ours MiT-B2 78.04 54.47 54.27 38.78 (+7.70)
Ours MSCA-B 79.17 55.16 57.27 40.27

achieve higher semantic mapping results on both of vali-
dation and test sets of 360BEV-Matterport dataset, which
are 46.31% and 40.27% in mIoU, respectively.

3. More Qualitative Analysis

3.1. Analysis on Stanford2D3D

The visualization of front-view semantic segmentation
(360FV) on the Stanford2D3D dataset is shown in Fig. 1,
where the RGB input, the prediction of the baseline, the
prediction of our model and the ground truth are depicted
from left to the right. The corresponding color map is
showcased at the top of Fig. 1. Compared with the base-
line Trans4Pass [9], the panoramic semantic segmentation
results of our model have clear boundaries among differ-

ent objects which is much more similar to the ground truth,
e.g., the door and the clutter of the second sample. Our
method also show promising performance on the objects
with small spatial size, e.g., chairs, compared with the base-
line in the last sample, indicating that our 360Attention ap-
proach is good at grasping underlying context feature and
cues through the deformable sampling locations.

3.2. Analysis on 360FV-Matterport

Fig. 2 is the front-view semantic segmentation visual-
ization of the presented 360FV-Matterport dataset, provid-
ing a detailed depiction of the spatial distribution of differ-
ent semantic classes. Compared with the baseline method
Trans4Pass [9], our model produces segmentation results
exhibit more precise contours and clearer boundaries be-
tween different objects, which closely resemble the ground
truth segmentation labels, e.g., the toilet and the door of the
first sample. In the second row, the door on the right side
is not recognized by the baseline model. In contrast to the
baseline method, our model is able to accurately distinguish
the door class from its surrounding object and wall classes,
despite its small size and low contrast with the surrounding
environment. The table in the center of the third sample
are correctly predicted by our model while it is erroneously
segmented by the baseline as furniture. This highlights the
superior performance of 360Mapper in panoramic semantic
segmentation under challenging conditions. In the last two
rows, the small chair by the wall and the door are correctly
recognized by our model.

3.3. Analysis on 360BEV-Stanford

We further introduce the qualitative results of 360BEV
task on the 360BEV-Standford dataset in Fig. 3. The RGB
input, the BEV semantic mapping results of the baseline
and 360 Mapper, the BEV semantic mapping ground truth
are depicted from left to right, where the color map is shown



Table 6. Per-class results (360BEV) on the 360BEV-Matterport dataset.
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Trans4Map [3] MiT-B2 val 36.72 47.87 28.52 82.96 34.44 22.27 39.58 16.28 22.75 26.29 25.08 42.81 62.25 13.95 41.51 37.79 45.82 19.56 48.05 47.71 38.25 27.31

360Mapper MiT-B2 val 44.32 74.30 31.94 85.85 42.01 26.71 46.40 23.21 25.00 24.87 27.36 51.37 66.59 20.99 47.07 54.97 56.91 29.50 55.70 63.16 45.82 31.04

360Mapper MSCA-B val 46.31 74.43 35.62 86.17 43.60 28.56 50.61 25.11 25.17 26.26 27.56 53.17 69.36 24.02 50.24 61.26 62.11 31.77 51.60 65.71 47.32 33.06

Trans4Map [3] MiT-B2 test 31.08 40.51 32.54 80.21 33.23 20.85 37.21 19.01 18.46 23.05 23.56 32.35 52.08 15.34 29.02 18.27 41.90 15.39 25.58 48.19 30.38 15.52

360Mapper MiT-B2 test 38.78 60.36 36.77 84.34 39.93 24.41 44.58 25.23 21.97 25.20 27.06 36.59 60.84 28.46 35.60 49.69 57.39 19.35 25.84 56.91 37.23 16.60

360Mapper MSCA-B test 40.27 62.82 40.09 85.22 42.60 25.48 46.00 24.37 25.11 26.08 27.39 39.68 61.45 28.18 36.17 50.88 58.31 19.77 29.85 59.78 35.39 21.14

beam board bookcase ceiling chair clutter column door floor sofa table wall window

RGB Input Baseline Ours Ground Truth

Figure 1. 360FV visualization and qualitative analysis on the Stanford2D3D dataset.

at the top of Fig. 3. The chairs of the first and the second
sample are correctly predicted by our method while they are
partially or entirely missed by the baseline. Compared with
the 360Mapper, the baseline shows more false prediction
especially regarding some furniture, e.g., the false predicted
bookcase at the third sample, which should be predicted as
chairs. At the last row of Fig. 3, the challenging door is
not recognized by the baseline model, while our 360Map-
per can provide accurate door segmentation result, even it is
a thin line in the BEV map. Our method shows overall su-
perior performance on the proposed task compared with the
baseline in terms of the semantic segmentation performance
on small objects, which further illustrates the strength by
using 360Attention.

3.4. Analysis on 360BEV-Matterport

Fig. 4 presents qualitative results for the 360BEV
task on the 360BEV-Matterport dataset. We observe
that our 360Mapper outperforms the baseline method
Trans4Map [3] in terms of accurately segmenting small ob-
jects. In particular, the baseline method exhibits more false
predictions, such as the misclassified chair in the first sam-
ple and object misidentified as table in the second sample.
Surprisingly, the different steps of stairs in the third and the
fourth sample are recognized correctly by both methods.
However, we find the fifth sample to be particularly chal-
lenging, as both the baseline and our 360Mapper recognize
the object in the center of the image as a counter, which is a
table as shown in the ground truth. This failure case shows
the difficulty of accurately distinguishing between similar
object categories from the context of panoramic images to
the bird’s-eye-view semantic maps.



wall floor chair door table pictu. furni. objec. windo. sofa bed sink stairs ceil. toilet mirror show. batht. count. shelv.

RGB Input Baseline Ours Ground Truth

Figure 2. 360FV visualization and qualitative analysis on the 360FV-Matterport dataset.



void beam board bookcase ceiling chair clutter column door floor sofa table wall window

RGB Input Baseline 360Mapper Ground Truth

Figure 3. 360BEV visualization and qualitative analysis on the 360BEV-Stanford dataset. Black regions are the void class, indicating
the invisible areas in BEV semantic maps. Zoom in for better view.



void wall floor chair door table pictu. furni. objec. windo. sofa bed sink stairs ceil. toilet mirror show. batht. count. shelv.

RGB Input Baseline 360Mapper Ground Truth

Figure 4. 360BEV visualization and qualitative analysis on the 360BEV-Matterport dataset. Black regions are the void class, indicating
the invisible areas in BEV semantic maps. Zoom in for better view.
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