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1. Implementation Details
We provide the training details of both CIFAR [8] and

ImageNet [1] experiments below.
CIFAR. For CIFAR-10 and CIFAR-100 experiments, we
train for 200 epochs with an initial learning rate of 0.1. We
use SGD with a Nestorov momentum value of 0.9. We use a
weight decay value of 5e−4 on all parameters except weight
coefficients. We decay the learning rate by a factor of 0.2 at
60, 120, and 180 epochs. We use a batch size of 128, and use
asynchronous BatchNorm across two devices (so BatchNorm
batch size is 64). We pad images by 4 pixels and crop to
32 x 32 pixels, and also randomly flip and normalize such
that it is zero-mean for training. We use the WideResNet
28-10 [17] architecture for all CIFAR experiments.
ImageNet. For ImageNet NPAS experiments we use a
WideResNet 50-2 [17] architecture. We train for 90 epochs
with a learning rate of 1.6. We use SGD with non-Nestorov
momentum value of 0.9. We use a batch size of 1024. We
decay the learning rate at epochs 30, 60, and 80 by a factor
of 0.1. We use a label smoothing value of 0.1, and a weight
decay of 0.0001. The weight decay is not applied to batch
norm parameters. We do a linear warmup for the first 10
epochs. We use standard Inception-style data augmentation.
For ensembleing experiments we use 64 16GB NVIDIA
V100 GPUs, whereas for NPAS experiments we use 4 48GB
NVIDIA A40 GPUs.

1.1. Efficient Ensemble Experiments

Homogeneous Ensembles: We use WRN-28-10 models
for all of our homogeneous ensembling experiments. For
these models, we found that each layer having it’s own Su-
perWeight works well, so did not perform the refinement
step.

*Equal Contribution
†Work done while at Boston University

Heterogeneous Ensembles: We train all models using the
settings above except we train on a single GPU, the learning
rate is decayed at epochs 60, 120, and 160, and we apply
cutout [2] during training (unlike efficient ensembling using
homogeneous ensembles, which does not use cutout for a
fair comparison to prior work). SWN-Multi-Width is a 3
member WideResNet (WRN) 28-[7,4,3] ensemble. SWN-
Multi-Depth/Width is a 4 member WRN 28-[7,4] 16-[7,4]
ensemble. All models start from 4 initial depth-binned Super-
Weight Clusters and are refined using the gradient similarity
threshold from Eq. (3), τ = 0.1. When learning where to
share coefficients, SWE-Multi-Width is trained with the gra-
dient similarity threshold from Eq. (2), β = 0.9 for CIFAR-
100 and β = 0.95 for CIFAR-10. SWN-Multi-Depth/Width
uses β = 0.9 for CIFAR-100 and β = 0.5 for CIFAR-10.
See Section 3.5 for a sensitivity study for hyperparameters
β and τ .

1.1.1 Baselines

ShapeShifter Networks [10], Slimmable Networks [16], Uni-
versally Slimmable Networks [15] are each trained using the
same training settings as the SWE-Multi-Width and SWE-
Multi-Depth/Width models (including using cutout for data
augmentation).
Slimmable Networks train a Multi-Width network by exe-
cuting a subset of the channels for a predefined set of width
configurations, called switches.

Universally Slimmable Networks extend Slimmable Net-
works to execute any width of a network within a max and
minimum by training at each iteration a random subset of
switches and calibrating the the batch normalization statistics
of the final switches following training. We train Universally
Slimmable using a max width of 7, a minimum width of 3,
and the number of widths trained at each iteration, n = 4.
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We calculate batch normalization statistics of network widths
[3,4,5,6,7] over one epoch following training.

ShapeShifter Networks (SSNs) automatically learn where
to share parameters within a network through clustering
coefficients α to form groups and then within each group
generating weights for layers from parameter banks via tem-
plate mixing methods. For SSNs we give each ensemble
member its own independent coefficients α and batch nor-
malization parameters. For the Multi-Depth/Width network
the layers are grouped manually by depth.

Multi-Scale Dense Network (MSDN) [6] is a Multi-Depth
network that provides dense connectivity between early exits
and operates at multiple scales for an efficient Anytime In-
ference model. We train MSDNet using the training scheme
from the original paper. All model hyperparameters are kept
the same as the original except the network is built with 16
blocks with 12, 24, and 48 output channels for each of the
three scales, respectively, in order to match the inference
time with other methods.

Hierarchical Neural Ensemble [11] is a Multi-Depth net-
work that trains a tree based ensemble using a novel distilla-
tion loss. Results are pulled directly from the original paper
with models evaluated for inference time using the author’s
code. The model uses a modified ResNet-50 with N = 16
ensemble members.

Efficient Homogeneous Ensemble Baselines: BatchEnsem-
ble [12] and MIMO [4] are two homogeneous ensembling
methods (which we apply to the anytime inference task
in Figure 1 of the main paper). BatchEnsemble perturbs
weights with rank-1 matrix for each ensemble member.
MIMO hard shares all parameters between ensemble mem-
bers, except for the input convolutional layer and output
layer. BatchEnsemble is ineffective as an anytime infer-
ence method because there are only N evaluation speeds,
where N is the number of ensemble members. MIMO only
provides a single inference speed because of its shared back-
bone.

2. Priority-Queue Weight Template Assignment
In Section 2.2 of our main paper we introduce a method

that uses gradient similarity between shared parameters in
order to determine where sharing is effective. The intuition
behind our approach is that sharing between layers is likely
less effective when those layers provide conflicting gradients
to the shared parameters. We proposed a greedy approach
that would train a model forN epochs and then measure sim-
ilarity between gradients supplied to the shared parameters
aggregated over an entire epoch. Gradient similarity between
layers ℓi, ℓj , which we denote as ψi,j , is computed using Eq.
(2) when learning where Weight Templates should share co-
efficients, and Eq. (3) when learning SuperWeight Clusters.
This similarity would be used to construct a priority-queue

Algorithm 1 Priority-Queue Group Assignment

Input: threshold ϵ, priority-queue Q =
{gradient similarity ψi,j : (layers ℓi, ℓj)}

Groups G = list()
while |Q| > 0 do

ψi,j , ℓi, ℓj = Q.pop()
if ψi,j > ϵ then

if ℓi ∈ g & ℓj ∈ g′, where g, g′ ∈ G then
G.append(g ∪ g′) ▷ Merge into new group
delete g, g′ from G

else if ℓi ∈ g then ▷ One layer already belongs
to a group

g = g ∪ {ℓj}
else if ℓj ∈ g′ then

g′ = g′ ∪ {ℓi}
else ▷ Neither layer belongs to a group

G.append({ℓi, ℓj})
end if

else ▷ similarity is below threshold, so add any
remaining ungrouped layers

if ℓi /∈ g,∀g ∈ G then
G.append({ℓi})

end if
if ℓj /∈ g′,∀g′ ∈ G then

G.append({ℓj})
end if

end if
end while

return G

Q, which we traverse merging any layers into a group G
that are above some threshold ϵ, with any remaining layers
being placed into the same group (see Algorithm 1). Note
that in our experiments ϵ is a threshold on gradient similarity,
but one could also use a threshold on the number groups
instead (or in combination), which we leave for future work.
Layers in the same group would continue to share param-
eters, whereas layers in different groups would no longer
completely share parameters.

3. Additional Efficient Ensembling Experimen-
tal Results

3.1. Additional Efficient Ensemble Results for Any-
time Inference

Prior work in efficient ensembling (e.g., [9, 12, 13]) uses
hand-crafted strategies that required ensemble members to
have identical architectures and adds diversity by perturb-
ing weights and/or features. In contrast, our SuperWeight
Networks, which learn effective soft parameter sharing be-



Figure 1. SuperWeight Networkslearns effective soft parameter
sharing between members, even for diverse architectures. This
enables our approach to support a range of inference times while
outperforming prior work in efficient ensembling and anytime in-
ference [4, 11, 12, 14, 16] on CIFAR-100 using WRN-28-5 [17].
Additionally, some efficient ensembling methods like MIMO [4]
do not enable multiple inference times at all, represented as a point
on the figure.

tween members, even for diverse architectures. As shown
in Figure 1, this enables our approach to support a range
of inference times while outperforming prior work in effi-
cient ensembling and anytime inference [4, 11, 12, 14, 16]
on CIFAR-100 using WRN-28-5 [17]. Additionally, some
efficient ensembling methods like MIMO [4] do not enable
multiple inference times at all.

3.2. Slimmable Networks and Universally
Slimmable Networks Ensemble Compar-
ison

Slimmable Networks [16] and Universally Slimmable
Networks (US) [15] both train a dynamic width network
such that given a budget at inference time, one can match
the budget by running a slim version of the network through
executing a subset of the channels at each layer. These
methods can be run as an ensemble similar to ours by running
inference through multiple widths. In Figure 2 we compare
our SWN-Multi-Width model to Slimmable and Universally
Slimmable ensembles. SuperWeight Ensembles benefit from
ensembling diverse architectures, improving performance.
In contrast, ensembling multiple widths of Slimmable and
Universally Slimmable Networks only leads to a slight boost,
or even decrease, in accuracy.

Method Top-1 Acc NLL ECE
BatchEnsembles [4] 77.5 1.02 12.9
MIMO [4] 76.6 0.927 11.2
SuperWeight Networks(ours) 76.01 0.885 10.2
SuperWeight Networks(ours) 76.6 0.872 8.8

Table 1. Efficient ensembling comparison on CIFAR-10-C

3.3. CIFAR-10-C

We present results on CIFAR-10-C below. Compared to
efficient ensembling baselines, our SWN-HE outperforms
others on two out of three metrics, while also providing
flexibility not present in prior work via our heterogeneous
ensembles and the ability to adjust the number of parameters
in our network without changing architecture.

3.4. Ensemble Diversity Analysis

A key attribute of ensembles which makes them effective
is their diversity; if the errors of ensemble members are not
decorrelated then there is no additional benefit of doing infer-
ence through additional ensemble members. In this section,
we demonstrate that SuperWeight Networks accomplish this.

We use a diversity metric introduced in Fort et al. [3],
which measure the fraction of differing predictions by two
ensemble members, normalized the by the error of one of
them. We present these results in Table 2; we can see that
SuperWeight Networks is more diverse than all other shared
parameter methods. One interesting finding is that 120M pa-
rameter SuperWeight Networks outperform Standard Deep
Ensembles, yet have lower diversity. Looking deeper, the
individual model accuracies are improved for SuperWeight
Networks (average deep 79.9% vs average SuperWeight
Networks 80.4%) Therefore, it seems like SuperWeight
Networks helps the model generalize better. This could
come from the fact that the parameter factorization limits
the space of possible weights. This is especially interesting
because WRN-28-10 is already a highly optimized model
from a hyper-parameter perspective. Of note is that one
of the ensemble members from the SuperWeight Networks
gives higher performance (80.5% for the best model) than
a standard model (80.1%). Therefore one could use Super-
Weight Networks to train a highly performant single model,
which signifies another advantage our approach has over
prior work [4, 12].

To provide another diversity metric, in Figure 3 we in-
terpolate between two WRN-28-10 ensemble members in
parameter space to see if the models indeed are in different
optimization basins, and report accuracy at each operating
point. We accomplish this by interpolating parameters, and
leaving Batch Normalization [7] in train mode because accu-
mulated statistics are not meaningful at interpolated points.
If the interpolates have high accuracy, this indicates the en-
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Figure 2. Slimmable Networks and Universally Slimmable Networks ensemble comparison. Anytime inference results using
Slimmable [16] and Universally Slimmable [15] as ensembles of multiple widths compared to our SWN-Multi-Width.

Method Params Diversity
Standard Deep Ensemble [4] 146.0M 0.88
BatchEnsembles [4] 36.5M 0.40
MIMO [4] 36.5M 0.91
SuperWeight Networks (ours) 36.5M 0.78
SuperWeight Networks (ours) 120.0M 0.85

Table 2. Diversity on CIFAR-100. Diversity is measured as the
proportion of samples two ensemble members disagree on, normal-
ized by the error rate of one of the member as in [3]. SuperWeight
Networks are more diverse than BatchEnsembles, the other shared
parameter model. Although our 120M model is slightly less diverse
than Standard Deep Ensembles, the performance is higher, due to
the average member accuracy being higher than Standard Deep
Ensembles

semble members landed in the same optimization basin and
therefore are not as diverse as they could be. We find that
interpolates have much decreased accuracy compared to the
end points, supporting the idea that our model learns diverse
ensemble members.

We can see that although all networks experience some
degree of accuracy drop between ensemble members, the
accuracy drop for the low-parameter model is significantly
lower. This seems to indicate that as the function space
becomes constrained with a lower number of parameters in
the parameter bank, the ensemble diversity starts to suffer.

3.5. Gradient Analysis Hyperparameter Sensitivity

SuperWeight Ensembles learn where to share parameters
through two steps of gradient analysis; first to form Super-

Weight Clusters (Section 2.2.1), and then to separate Super-
Weights by decoupling shared coefficients (Section 2.2.2).
Here we explore the sensitivity of the hyperparameters used
in each step.

When separating SuperWeights using Eq. (3), we give
unique coefficients to SuperWeights where the similarity
between the gradients of shared coefficients is less than β. β
is used as the threshold ϵ in Algorithm 1 for separating coef-
ficients. In Figure 4(a) we show how sensitive our method is
to the selection of β using the SWN-Multi-Width architec-
ture on CIFAR-100 [8]. In addition to reporting results for
values of β ∈ {0.1, 0.5, 0.9} (note that τ = 0.1), we also
report results when no coefficients are shared, and when all
coefficients are shared between layers sharing Weight Tem-
plates. The results in Figure 4(a) show that no-coefficient
and strict coefficient sharing (referred to as “Not Shared”
and “Shared,” respectively) underperform compared to using
our approach. Note that we found optimal values of β to
come from dataset-specific tuning.

When generating SuperWeight Clusters using Eq. (2) we
split layers into separate groups if the gradient similarity is
less than τ . The higher τ , the more groups are formed, the
less layers sharing Weight Templates, and the less parameters
given to each Weight Template. Setting τ ≥ 0 results in
sharing between all layers which have gradients that are not
conflicting on average. As τ is increased, layer gradients
must point in closer directions to be shared. Note τ is given
as the input value to ϵ in Algorithm 1. In Figure 4(b) we
report best performance comes when τ = 0.1 when using the
SWN-Multi-Width architecture on CIFAR-100 [8], which
we found to be consistent across settings and datasets. Thus,



Figure 3. Linear interpolations in parameter space on CIFAR-100, with different numbers of parameters in an ensemble of size 4. We plot
accuracy vs interpolation point. Because the accuracy dips, we know the ensemble members are diverse and find different local minima.

Figure 4. Gradient analysis hyperparameter sensitivity. Anytime inference results on CIFAR-100 [8] using SWN-Multi-Width architecture
when: a) varying the gradient similarity threshold β from Eq. (3) for coefficient sharing, no coefficient sharing, and strict coefficient sharing;
and b) varying the gradient similarity threshold τ from Eq. (2) for SuperWeight Cluster forming. For both β and τ best performance is
between 0.0 and 1.0, indicating that too much sharing and too little sharing are both harmful.

we use this same value of τ across all experiments.

3.6. Performance under severe parameter con-
straint

One key feature of SuperWeight Networks is that the pa-
rameter count is decoupled from backbone. It is therefore
interesting to see how the network behaves under stronger
parameter constraints. In Table 3, we present CIFAR-100
top-1 accuracies under various parameter constraints. SWN-
Single Superweight refers to the homogeneous ensemble
which has a single superweight per layer. This is what is

presented in Table 2 of our paper. SWN-Gradient Conflict
is also a homogeneous ensemble, but with learned Super-
Weight Clusters using the gradient conflict criterion. Finally,
SWN-Heterogeneous is a WRN 34-8, 28-12, 28-10, and 28-8
ensemble. The gradient conflict criterion becomes more im-
portant at lower parameter counts. The improvement of the
heterogeneous ensemble over the homogeneous ensemble
also increases with decreased parameter counts.



Method 7 million 15 million 36.5 million
SWN-Single Superweight 79.2% 81.3% 82.3%
SWN- Gradient Conflict 80.1% 81.4% 82.2%
SWN- Heterogenous 80.8% 81.6% 82.4%

Table 3. Changing parameter constraint: CIFAR-100 Top-1 ac-
curacies. The gradient conflict criterion becomes more important
at lower parameter counts. The improvement of the heterogenous
ensemble over the homogenous ensemble also increases with de-
creased parameter counts.
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SuperWeight Clusters membership for a WRN-28-7/WRN-16-7 ensemble
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Figure 5. SuperWeight Cluster Membership of a two member
ensemble, a WRN-28-7 and WRN-16-7. The initial depthwise
sharing pattern would segment each network into four equal groups
of layers. Our gradient-based learning of SuperWeight clusters
allows indvidual layers to specialize. Interestingly, it seems like our
method learns to separate adjacent layers into separate SuperWeight
clusters. This could increase diversity between ensemble members.

3.7. SuperWeight Cluster Membership

In Figure 5, we present sharing patterns (SuperWeight
Cluster membership) of two networks (WRN-28-7/WRN-16-
7). The initial depthwise sharing pattern would segment each
network into four equal groups of layers. Our gradient-based
learning of SuperWeight clusters allows indvidual layers to
specialize. Interestingly, it seems like our method learns to
separate adjacent layers into separate SuperWeight clusters.
This could increase diversity between ensebmle members.

3.8. Diverse Architecture Families

Although we show results primarily on ResNets in our
work, our sharing methodology does indeed function well
for diverse ensembles. For example, consider an ensemble
consisting of a Mobilenetv2 and WRN-28-5, shown in Ta-
ble 4. We can see that our sharing procedure even helps
compared to standard Deep Ensemble performance, despite
diverse architectures. Note that these results are over 2 en-
semble members, whereas the results in Table 2 of our paper

Method Top-1 NLL ECE

Deep Ensembles 80.1% 0.776 6.5%

SWN-HE 80.3% 0.762 5.3%

Table 4. Diverse Architecture Families: We compare the perfor-
mance of an ensemble consisting of a Mobilenetv2 and WRN-28-5
to standard deep ensembles. We see that our sharing procedure
boosts performance despite diverse architectures.

use 4 ensemble members.

3.9. Efficient Ensembles on CIFAR

In Table 5 we present CIFAR results from the main pa-
per, with error bars (representing standard error) to provide
additional context. Note that even with this additional infor-
mation, it is clear our method outperforms all baselines on
CIFAR in the low parameter regime, and even outperforms
standard ensembles in the high parameter regime (with 17%
fewer parameters). Results we report for baselines are taken
from prior work and do not provide error bars.
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