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This supplementary material presents the qualitative
analysis of our model, NAOGAT on Ego4D [15] and
EpicKitchen-100 [4] dataset. We provide a video depict-
ing the performance of our model when progressed over the
allowed the observed segment of a video clip, which is dis-
cussed in detail in Sec. 1. In addition, we also provide
some visualization for next-active-object (NAO) annotation
on EpicKitchen-100 [4], depicting its location and the class
label in the last observed frame for a given video clip. We
also describe the annotation pipeline followed to curate the
ground-truth data for next-active-object prediction for the
Short-Term Anticipation task in Sec. 2.

1. Video

We provide additional detail on performance of our
model, NAOGAT, when compared with the object detec-
tions provided by the object detector pre-trained on Ego4D
[15]. We notice a significant improvement in refining the
object detections and also identifying objects which are not
detected by the object detector to anticipate the location of
NAO. The video entails the performance of NAOGAT auto-
regressively when fed with a sequential progressive video
clip. It can be noticed that as the video progresses, the
model further refines the predictions based on past observa-
tions and predicts the next-active-object bounding box and
its class label, along with future action and time to contact
(TTC) with the object. The video also provide a visualiza-
tion on future frames which are not observed by the model
describing the time taken to contact with the next-active-
object.

2. EpicKitchen-100 NAO dataset curation

The Short-Term Anticipation (STA) task involves pre-
dicting the location (bounding box, b̂) and class label, n̂ of
the next-active-object, as well as the future action v̂ and the
time to contact (δ) with the NAO, for a given video clip. It is
important to note that the NAO must be present and visible
in the last observed frame for the task to be valid. Currently,
only Ego4D [15] dataset provides the precise annotation for
studying the problem.

The EpicKitchen-100 dataset [4] offers valuable ground-
truth data for the action anticipation [12, 13] task. The
dataset includes information on future actions such as ”peel-
ing an onion,” future verbs like ”peel,” and associated noun
labels of the object involved in the action, such as ”onion.”
This makes the dataset an excellent resource for studying
and evaluating models designed to predict future actions.
We consider the noun label as the NAO class label for a
given clip. However, it lacks annotations for the location of
NAO in the last observed frame. For this purpose, we aimed
to curate our own annotation for NAO estimation following
the pipeline described in Fig. 1.

To curate ground-truth data for the next-active-object
prediction for the Short-Term Anticipation task, we first ex-
tract the last observed frame from a given clip. Next, we use
a pre-trained object detector [35] on the EK-55 dataset [5]
to obtain raw object detections for the frame. We then verify
if the ground-truth NAO class label is identified in the raw
detections. If a match is found, the corresponding bounding
box for that detection is used as the ground-truth annotation
for the NAO bounding box (b̂). However, if the object de-
tector fails to identify any object with the ground-truth NAO
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Figure 1. Annotations pipeline for extracting next-active-object ground-truth labels for EpicKitchen-100 [4] dataset.

Figure 2. NAO annotations for EK-100 as curated from the pipeline described in Fig. 1. The frames corresponds to the last observed frame
for a given clip and the detection represents the next-active-object information in terms of NAO location and its class label.

label, we use a Hand-Object detector [?] to obtain bound-
ing boxes for the active object [32]. This is because the
hand-object detector has been shown to be state-of-the-art
in identifying hand-object detection and has been used in
the literature [24,37]. In the event that the Hand-Object de-
tector identifies an active object, we extract the Region of
Interest (ROI) for the corresponding detection from the in-

put frame. This ROI is then fed into the object detector [35]
used earlier, and we take the top-3 predictions from the de-
tector. These predictions are once again verified against the
Ground-Truth NAO class label to check if they contain the
NAO label. If one of the predictions satisfies the criteria, the
location of the active object is used as the ground-truth an-
notation for the NAO location. This pipeline is used to only



curate information regarding the location of NAO and not
the class label of NAO for a given clip. The class label for
NAO is used from the annotations provided with EK-100
for action anticipation. The final annotations for the dataset
are shown in Fig. 2.

3. Limitations of our model for EpicKitchen-
100 dataset

It is important to note that EpicKitchen-100 was not cu-
rated in alignment with the definition of STA. Specifically,
the dataset does not provide annotations for next-active-
object, and it is not mandatory for NAO to be present in
the allowed last frame observed by the model. As discussed
in the main paper, our dataset curation method (described
in Sec. 2) could not annotate the ground-truth data for the
next-active-object in 22% of the ”Test Set” of the Valida-
tion split, as there were no detected objects in those clips.
Moreover, the EK-100 dataset suffers from a dataset bias,
as there are 300 class labels for objects, and similar-looking
objects are often classified differently, as shown in Fig. 3.
This further confuses the model’s identification of objects
and impedes its ability to anticipate future actions.
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Figure 3. Due to the large number of noun labels in EK-100, similar-looking objects are labeled differently multiple times in the dataset.
This confuses our model, NAOGAT since the future action prediction is affected based on the NAO prediction.

Figure 4. Instances in EpicKitchen-100 where the next-active-object is not detected / not present in the last observed frame.
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