
Supplementary Material for
Object Re-Identification from Point Clouds

A. Extended experimental details
The following section contains further details of the models used to conduct our experiments.

A.1. 3D object detectors
We generate our ReID datasets using point cloud samples cropped from predicted 3D bounding boxes and image samples

cropped from their projections onto images. Here, we describe the details of the object detectors used to predict these
bounding boxes.

Class Level 1 Level 2
mAP mAPH mAP mAPH

Car 68.3 67.8 60.7 60.2
Truck 34.2 33.5 32.2 31.6
Bus 49.0 48.6 42.6 42.3
Motorcycle 53.1 52.2 38.0 37.4
Cyclist 68.4 67.0 65.8 64.5
Pedestrian 65.9 59.7 58.0 52.4

Table 5. Performance of the CenterPoint model on the WOD
with enhanced vehicle labels. The metrics are only calculated
on samples with an enhanced label.

Class AP ATE ASE AOE AVE AAE
Car 89.2 0.170 0.148 0.061 0.274 0.185
Truck 64.6 0.326 0.181 0.093 0.247 0.217
Bus 75.3 0.338 0.189 0.069 0.430 0.274
Trailer 42.5 0.520 0.201 0.610 0.214 0.140
Const. Veh. 30.4 0.735 0.431 0.797 0.118 0.295
Pedestrian 88.2 0.134 0.288 0.387 0.217 0.101
Motorcycle 78.6 0.184 0.249 0.216 0.348 0.271
Bicycle 65.1 0.169 0.257 0.411 0.190 0.015
Traffic Cone 79.5 0.121 0.317 - - -
Barrier 72.0 0.178 0.277 0.054 - -

NDS: 0.714 68.5 0.288 0.254 0.300 0.255 0.187

Table 6. Performance of the BEVfusion C+L model on the
nuScenes validation set. This model was used to generate
the nuScenes detections for tracking and to create the nuScenes
ReID dataset.

nuScenes On the nuScenes dataset, we use BEVfusion C+L [28] to extract detections for constructing our ReID dataset.
Table 6 shows its performance on the nuScenes validation set.

Figure 6. Waymo class label split after propagating segmentation annotations. The plot shows the proportions of different types of
objects in the Waymo training set. We note that those samples belonging to the “other vehicle” class are ignored during the creation of our
ReID dataset since we do not have label information for them.



Waymo On the Waymo dataset, we train a CenterPoint [52] object detector using the implementation from [7]. Our Cen-
terPoint model is trained for 20 epochs, where each epoch constitutes a pass over 20% of the frames in WOD (sampled
uniformly at random). Since the Waymo dataset’s Vehicle class is heterogeneous and contains various sub-types of objects
that are annotated separately in the nuScenes [2] dataset, we utilize the point-wise semantic segmentation label to automat-
ically divide the Vehicle class into {Car, Truck, Bus, Motorcycle}. Figure 6 shows the proportion of object classes after
propagating segmentation labels. Our model’s evaluation results on the Waymo validation set with segmentation labels are
reported in table 5.

While results between datasets are difficult to compare, we hypothesize that the nuScenes model attains relatively stronger
performance. This is to be expected as the model incorporates both camera and LiDAR information, while our Waymo model
does not. We note that this performance difference should have an impact on the level of noise in predicted bounding boxes
and consequently may impact our ReID network’s performance.

A.2. Hyperparameters, training details, and inference speed.
Table 7 reports the hyperparameters of our ReID networks in greater detail. We note that the difference in training epochs

(400 vs. 500) for the Waymo and nuScenes datasets was intentional to have approximately the same number of gradient
descent steps for each (±3 epochs).

Parameter Explanation Value

Point model hyperparameters

B Batch Size 256⇥ 4

N Number of input points 128

Dp Point input dimension 3

LR Learning Rate 3 · 10�4

WD weight decay 0.01

Gc Gradient Clipping 1

Image model hyperparameters

DI Image input dimension 3⇥ 224⇥ 224

B Batch Size 60⇥ 4

LR Learning Rate 3 · 10�5

WD weight decay 0.01

Gc Gradient Clipping 1

Randomly initialized Waymo models

E Training epochs 500

Randomly initialized nuScenes models

E Training epochs 400

Pretrained Models

E Training epochs 200

Table 7. Hyperparameters of our different architectures. Both image and point models follow a cyclic learning rate schedule with
target ratio (10, 1e� 4), cyclic times 1, and step ratio up 0.4 implemented by the software package MMCV [6]

Model Par. Batch Size Inference Time

DeiT-Tiny 5910K 100 32.4 ms ± 1.75ms
DeiT-Base 87, 338K 100 173 ms ± 11.8ms
Point Transformer 529K 100 15 ms ± 0.605ms
DGCNN 617K 100 18.7 ms ± 3.25 ms
PointNet 2800K 100 8.04 ms ± 0.0996 ms

C2FCN [17] 182.5k 512 92 ± 7.73 ms
C2FCN no EFA 91.3k 512 6.27 ± 1.43 ms
RTMM 91.3k 512 13.2 ± 1.48 ms

Table 8. Inference speed of different point and image backbones. All models were tested on a single RTX 3090 GPU.

Table 8 reports the inference speed of all models used in our empirical evaluation. We select batch sizes to simulate the



needs of practitioners in a multi-object tracking context. Backbone models are tested for a batch size of 100, an approximate
upper bound on the number of detections a 3D object detector might make at a given timestep. We test RTMM with a larger
batch size of 512, since pairwise comparisons scale quadratically with the input size. We note, however, that it is possible to
considerably reduce the comparisons needed by only comparing within the same class or imposing other such rules. At the
batch sizes shown, all our models, backbone + RTMM, run in real-time (< 10Hz), except for the DeiT-Base model.

B. Additional dataset details

Table 10 reports training set statistics for both our ReID datasets, while table 9 report test set statistics. Algorithms 1
and 2 provide pseudocode for the even and uniform sampling procedures introduces in section 4 and evaluated in table 3. In
algorithm 1, for a given object, the frequency distribution over power-two buckets is computed by calculating the number
of observations that fall within each bucket and normalizing by the total number of observations of that object, creating a
probability distribution over buckets.

Dataset Positive Pairs Negative Pairs Total

nuScenes Eval 53,787 53,733 107,520
Waymo Eval 120,859 120,805 241,664
Waymo Eval All 145,421 145,287 290708

Table 9. Evaluation set statistics.

Classes # of Obj. # of Obs. Pos. Pairs Neg. Pairs
FP bicycle �� 13, 100 �� ��
FP bus �� 2, 069 �� ��
FP car �� 125, 223 �� ��
FP motorcycle �� 7, 222 �� ��
FP pedestrian �� 106, 206 �� ��
FP trailer �� 8, 023 �� ��
FP truck �� 21, 792 �� ��
bicycle 554 7, 575 7.76e+ 4 1.62e+ 12
bus 422 8, 375 1.07e+ 5 4.54e+ 11
car 20, 830 326, 967 3.77e+ 6 3.34e+ 16
motorcycle 588 8, 201 8.67e+ 4 9.73e+ 11
pedestrian 9, 112 156, 852 1.83e+ 6 5.43e+ 15
trailer 773 13, 921 1.66e+ 5 3.34e+ 12
truck 2, 933 50, 487 5.98e+ 5 1.32e+ 14

Total 35, 212 856, 013 6.63e+ 06 3.90e+ 16

Classes # of Obj. # of Obs. Pos. Pairs Neg. Pairs
FP bicycle �� 27, 043 �� ��
FP bus �� 2, 378 �� ��
FP car �� 24, 971 �� ��
FP motorcycle �� 46, 111 �� ��
FP pedestrian �� 604, 021 �� ��
FP truck �� 5, 987 �� ��
bicycle 497 46, 204 3.02e+ 6 1.23e+ 14
bus 378 43, 639 3.35e+ 6 4.59e+ 13
car 43, 305 4, 002, 934 2.78e+ 8 3.25e+ 19
motorcycle 355 32, 317 2.18e+ 6 9.90e+ 13
pedestrian 18, 107 1, 954, 970 1.41e+ 8 6.40e+ 18
truck 1, 114 108, 722 7.77e+ 6 7.13e+ 14

Total 63, 756 6, 899, 297 4.35e+ 08 3.89e+ 19

Table 10. Training set statistics for nuScenes (left) and WOD (right). From left to right, the columns contain the number of unique
objects of each class, the number of observations of these objects, the number of positive pairs of each class, and the number of negative
pairs of each class. False positives are used to create negative pairs with observations of the corresponding true positive class. Positive and
negative pairs are created from objects of the same predicted class.



Algorithm 1: Even Data Sampling Algorithm for
one Epoch of Training

Data: Dataset D of all objects and their observations.
Result: A set of sampled pairs for one epoch of training.
// Initialize sample

S  ;;
foreach object O in D do

o1  random observation of O;
c class of O;
p1  random number between 0 and 1;
if p1  0.5 then

// Sample positive pair

o2  random observation of O other than o1;
end
else

// Get distribution of object O

D  frequency distribution of power-two buckets
for O’s observations;

b sample a point density bucket from D;
// Sample negative observation

p2  random number between 0 and 1;
if p2  0.5 then

// Sample false positive

fpo  
random false positive of density b with predicted class c;

S  S [ fpo;
end
else

// Sample true positive

o2  random observation of density b with class c
other than those associated with O;

end
end
S  S [ (o1, o2);

end
return S

Algorithm 2: Uniform Data Sampling Algo-
rithm for one Epoch of Training

Data: Dataset D of all objects and their observations.
Result: A set of sampled pairs for one epoch of training.
// Initialize sample

S  ;;
foreach object O in D do

o1  random observation of O;
c class of O;
p1  random number between 0 and 1;
if p1  0.5 then

// Sample positive pair

o2  random observation of O other than o1;
end
else

// Sample negative observation

p2  random number between 0 and 1;
if p2  0.5 then

// Sample false positive

fpo  random false positive of predicted class c;
S  S [ fpo;

end
else

// Sample true positive

o2  random observation of class c
other than those associated with O;

end
end
S  S [ (o1, o2);

end
return S

C. A reasonable assumption
Section 5.2 analyses the results from table 2 and claims that the performance improvements from nuScenes to Waymo

are due in part to the increase in sensor resolution between the datasets. However, Waymo is also much more diverse than
nuScenes featuring 63, 756 unique objects vs. 35, 212. This is a potential confounder since a more diverse dataset can also
lead to improved performance. We claim, in the main manuscript, that under a reasonable assumption, we can obtain a lower
bound on the performance improvement from nuScenes to Waymo that can be attributed to the increase in sensor resolution.
The assumption is that the increased diversity from nuScenes to Waymo causes the same performance improvement (in terms
of matching accuracy) for image and point cloud models alike. We believe it is reasonable to assume this since we have
paired data (i.e., the point clouds and image crops are observations of the same objects). Assuming this, we can then take
the performance difference from nuScenes to Waymo of the randomly initialized DeiT-Tiny model to be the increase caused
by dataset diversity (as it can only be smaller than or equal to this quantity). Then, assuming no other confounders are
present, we can account for the effect of a more diverse dataset by subtracting the performance improvement of the randomly
initialized DeiT-Tiny model from the improvement of the point models. This is the number we report in section 5.2.

D. Additional results analysis
While the main manuscript highlights the results that are central to our contributions, some secondary figures could not be

included, but still provide additional information. We include them and a corresponding discussion here.

D.1. Scaling compute on nuScenes
Table 11 reports results for scaling compute on nuScenes. Specifically, we train four Point-Transformer models for 500 ·2i

epochs with i 2 {0, 1, 2, 3}. All models noticeably improve from longer training, as they do on WOD.

Backbone Epochs Acc. F1 Pos. F1 Neg. Car Pedestrian Bicycle Bus Motorcycle Truck FP
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{ Point-TransformerL 4000 77.89% 77.92% 77.85% 82.03% 67.63% 71.82% 84.15% 71.35% 84.77% 83.18%
Point-TransformerL 2000 76.91% 77.09% 76.72% 81.02% 66.68% 70.25% 83.01% 71.3% 83.78% 82.21%
Point-TransformerL 1000 75.67% 75.92% 75.41% 79.45% 65.79% 69.82% 82.27% 68.97% 82.94% 81.43%
Point-TransformerL 500 74.54% 74.72% 74.35% 78.36% 64.39% 67.24% 82.62% 68.08% 82.48% 81.04%

L: using LiDAR data Table 11. Scaling compute improves performance for all classes on nuScenes.



D.2. Additional analysis comparing accuracy at different point densities
Figure 7 is the twin of figure 1 from the main manuscript. Each figure plots the performance of our ReID networks on

nuScenes (left) and Waymo (right) at different point densities. The difference between the two figures is seen on the x-axis.
Figure 7 plots accuracy on pairs of observations with at least one observation containing x points or more, while figure 1
requires that both observations in the pair have at least x points. We observe that the increase in accuracy is steeper when
restricting to cases where both observations have more than x points. However, figure 7 shows the same trend but with a
smaller slope and more samples for every x value.

Similarly, figure 8 is the twin of figure 4 in the main manuscript. We see a similar trend of increased performance relative
to the number of points but with a smaller slope compared to the plot which filters for both observations having more than
x points. Notably, performance improves faster on cars in figure 8 than it does for pedestrians, while the opposite was true
in figure 4, suggesting that pairs of dense observations are needed for strong performance on deformable objects, while rigid
objects can perform well with only one dense observation.

Figure 7. The performance of point cloud ReID approaches image ReID with sufficient points. The plot shows the performance of
the image and point cloud ReID networks as a function of the number of points in at least one observation of the pair. Left plots models
trained on nuScenes and evaluated on the nuScenes Eval set, while right plots models trained on Waymo and evaluated on Waymo Eval.

Figure 8. Deformable vs. Non-deformable objects. The plot shows the performance of image and point cloud ReID networks for classes
car and pedestrian as pairs of observations without at least one observation containing x points are filtered out. We observe a similar trend
for deformable and non-deformable objects: both increase with more points. However, we note that the increase in ReID performance for
cars is steeper than for pedestrians. Left is evaluated on pedestrians from the Waymo Eval set, while right is evaluated on cars from Waymo
Eval.

D.3. Does point ReID performance plateau at higher point densities?
Figure 1 from the main manuscript plots the performance of image and point cloud ReID networks as a function of point

density. The plots show that ReID performance improves as point density increases. However, the performance improvements
appear to plateau (the slope decreases) as the number of points is increased, suggesting that there may be a ceiling to point



ReID performance. That is, the problem of re-identification from point cloud observations may have large irreducible error.
If this were the case, it would imply that there is little performance still to gain from further increasing sensor resolution.
However, we believe that this is not the case as there are other explanations for the plateau in performance.

Firstly, we observe for all point models that the plateau is more pronounced on the nuScenes dataset than WOD. This is
to be expected as the nuScenes datasets is significantly sparser than WOD, meaning that many fewer samples of high point
density are seen during training. Therefore, the nuScenes models reach their maximum performance at fewer points than on
WOD and have difficulty with the highest point densities as these samples are in the tail of the training distribution.

Secondly, our networks only accept n = 128 points as input, subsampling or resampling the input point cloud as needed.
This means that the same amount of information is provided to the network for any observation with greater or equal to
128 points. We believe that this along with the network architecture has an influence on the change in slope observed. To
verify our hypothesis we conduct experiments training different point models on WOD that accept n 2 {128, 256, 512, 1024}
points. Figure 9 reports the performance of these models on Waymo Eval as a function of point density, mirroring figure 1
(right). We do not train models for this experiment on nuScenes as we are concerned with performance at high point density
and the nuScenes training set is not dense enough to provide meaningful results. Subplot (a) shows the performance of the
Point-Transformer for different numbers of input points. We observe that as the number of input points are increased, the
slope improves and higher performance is achieved. Similar trends overall are observed for DGCNN and PointNet (Subplots
(b) and (c), respectively), though there is some variance between the three architectures. For instance, Point-Transformer and
DGCNN experience poorer performance at lower point densities for models that accept more points, whereas for PointNet
the models that accept more points remain strongest throughout. These experiments show that both the architecture and the
number of input points affect the slope of curves, confirming our hypothesis.

In conclusion, after further investigation, we find that a multitude of factors, including, dataset point density distribution,
architecture, and the number of input points, can impact the slope of point cloud ReID models in figure 1. This suggests
that appropriately modifying these factors can lead to increased performance at high point density, showing that the results
in figure 1 are not indicative of a fundamental ceiling in performance for point ReID.

(a) Point-Transformer

(b) DGCNN (c) PointNet
Figure 9. Increasing the number of input points for various architectures on WOD. We plot the performance of point cloud ReID
networks as a function of point density for networks trained with varying numbers of points. For n 2 {128, 256, 512, 1024}, inputs are
subsamples or resampled uniformly at random to match the desired number of points, n.



D.4. A qualitative study of Point ReID success and failure cases
Figures 10, 11, 14, 15, 16, and 17 visualize success and failure cases of our Point-Transformer + RTMM model trained

for 400 epochs on WOD. These observations were collected from Waymo Eval and were all filtered to contain more than
200 points to make them easier for humans to interpret. For each class, we show a True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative(FN). We note that correctly rotated and translated observations, i.e. those without
or with minimal bounding box noise, will be centered at (0, 0, 0)> and facing the axis labeled “Length”. In the following
paragraphs, we select classes car and bicycle to analyze in-depth but still provide success and failure cases for other classes
in figures 14, 15, 16, and 17.

Class car Subfigure (a) of figure 10 provides an interesting true positive example. Both observations seem to contain points
from different parts of the vehicle, yet RTMM is able to infer that they are observations of the same vehicle. This suggests
that the model may have some concept of vehicle symmetry, enabling this inference. Subfigure (b) shows a True Negative.
This pair seems to have LiDAR points on the same side of the vehicle making the model’s predictions easier. The vehicle on
the right appears to be larger than the vehicle on the left, which may be how RTMM makes the correct decision. Subfigure (c)
shows the first failure case, a false positive. This example is particularly glaring as it is apparent that the vehicle on the left
has two elevated pillars which the vehicle on the right does not. It is possible, however, that these were missed when the point
cloud is initially subsampled, suggesting that accepting more input points could lead to a more robust model. Subfigure (d)
shows a false negative failure case. Although both examples have LiDAR points on the same sections of the vehicle, RTMM
makes an incorrect prediction. This could, again, be caused by the uniform subsampling of the input point cloud to n = 128
points that can introduce variance into the perceived shapes.

Class bicycle Subfigure (a) of figure 11 shows a true positive pair. Although the rightmost observation lacks LiDAR points
on the front wheel of the bicycle and the head of the cyclist, RTMM makes a correct prediction. We hypothesize that this is
due to the distinctive shape of the rider’s back which is visible in both observations. Subfigure (b) shows a false negative pair.
The cyclist in the rightmost observation appears to be wearing a backpack, while the other cyclist is not. This may be how
RTMM was capable of making a correct prediction. Subfigure (c) shows the first failure case, a false positive. Although both
bicycles are almost completely covered by LiDAR points, RTMM makes a mistake. This may be attributable to the front part
of the bicycle being more visible in the right image, while the back is more visible on the left. In such a situation, RTMM
may be unable to compare rigid components of the observation. Finally, subfigure (d) shows a false negative. It appears that
both observations feature LiDAR points capturing the cyclist from different angles. Given that the object is also deformable,
this adds increased difficulty, possibly leading RTMM to incorrectly classify this pair as not matching.

(a) True Positive (b) True Negative

(c) False Positive (d) False Negative

Figure 10. Qualitative success and failure cases for class car on WOD. We use the Point-Transformer model trained for 400 epochs. We
select pairs of TP, TN, FP, and FN examples that have more than 200 points from Waymo Eval.



(a) True Positive (b) True Negative

(c) False Positive (d) False Negative

Figure 11. Qualitative success and failure cases for class bicycle on WOD. We use the Point-Transformer model trained for 400 epochs.
We select pairs of TP, TN, FP, and FN examples that have more than 200 points from Waymo Eval.

E. Dataset visualization
In figures 12 and 13, we provide visual examples of samples from our Waymo ReID dataset. The images are cropped from

projected 3D bounding boxes predicted by our centerpoint model (see sec. A.1 for details). The center plot shows the LiDAR
point associated to the same observation. We selected observations with more than 200 points, so that it is possible for a
human to make out the underlying object. However, most of the observations contain fewer than 200 points. The leftmost
plot shows complete point clouds created by aggregating the points from all observations using ground truth bounding boxes.
Aggregated deformable objects (pedestrian, bicycle, and motorcycle) have a blob-like appearance, while rigid objects retain
a more detailed shape. This is due to their deformability, causing them to take on many different poses over a sequence.

F. CFA block structure
Our RTMM, illustrated in Fig. 2, compares two point clouds by symmetrically applying CFA blocks [17] between them.

These are linear attention blocks, but with a few modifications; here we detail the exact structure used. CFA blocks receive
two sets of points {x(i)

1 }n1

i
, {x(i)

2 }n2

i
, which we designate in stacked matrix form X1,X2 2 Rn⇥3 henceforth, where the

points are subsampled or resampled to size n (we use n = 128 for all our models), and their corresponding representations
f✓(X1), f✓(X2), where f✓ can be any set or sequence processing network. The block first computes linear cross-attention
(LCA):

L = LCA(f✓(X1), f✓(X2) + P , f✓(X2) + P ) (5)

where P = MLPpos(X2) is a positional encoding computed from the point cloud. Next, a layer normalization (LN) is
applied followed by an MLP applied to the channel-wise concatenation of LN(L) and f✓(X1)) and another layer normal-
ization,

L0 = LN( MLP( LN(L)� f✓(X1))). (6)

Finally, a residual connection is applied to complete the CFA block:

CFA(f✓(X1),X1, f✓(X2),X2) =L0 + f✓(X1). (7)



Figure 12. Samples from our Waymo ReID dataset for deformable objects. The plot shows the cropped image (left) and cropped
sparse point cloud (center) for the same predicted 3D bounding box (output by our centerpoint model). We also include the corresponding
complete version of the point cloud (right), created by aggregating LiDAR scans over different observations and mirroring them about the
object’s center.



Figure 13. Samples from our Waymo ReID dataset continued for rigid objects. The plot shows the cropped image (left) and cropped
sparse point cloud (center) for the same predicted 3D bounding box (output by our centerpoint model). We also include the corresponding
complete version of the point cloud (right), created by aggregating LiDAR scans over different observations and mirroring them about the
object’s center.



(a) True Positive (b) True Negative

(c) False Positive (d) False Negative

Figure 14. Qualitative success and failure cases for class pedestrian on WOD. We use the Point-Transformer model trained for 400
epochs. We select pairs of TP, TN, FP, FN examples that have more than 200 points from Waymo Eval.

(a) True Positive (b) True Negative

(c) False Positive (d) False Negative

Figure 15. Qualitative success and failure cases for class motorcycle on WOD. We use the Point-Transformer model trained for 400
epochs. We select pairs of TP, TN, FP, FN examples that have more than 200 points from Waymo Eval.



(a) True Positive (b) True Negative

(c) False Positive (d) False Negative

Figure 16. Qualitative success and failure cases for class bus on WOD. We use the Point-Transformer model trained for 400 epochs.
We select pairs of TP, TN, FP, FN examples that have more than 200 points from Waymo Eval.

(a) True Positive (b) True Negative

(c) False Positive (d) False Negative

Figure 17. Qualitative success and failure cases for class truck on WOD. We use the Point-Transformer model trained for 400 epochs.
We select pairs of TP, TN, FP, FN examples that have more than 200 points from Waymo Eval.
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