
Supplementary Material:
Permutation-Aware Activity Segmentation via Unsupervised Frame-to-Segment

Alignment

Quoc-Huy Tran∗ Ahmed Mehmood∗ Muhammad Ahmed Muhammad Naufil
Anas Zafar Andrey Konin M. Zeeshan Zia

Retrocausal, Inc., Redmond, WA
www.retrocausal.ai

This supplementary material begins with showing some
qualitative results in Sec. S1. Next, we present the abla-
tion results of using MLP encoder and using A in segment-
/alignment-level modules in Secs. S2 and S3 respectively,
and adopt the video-level segmentation method of ABD [2]
for the activity-level segmentation task in Sec. S4. Finally,
Sec. S5 provides the details of our implementation, while
Sec. S6 includes a discussion on the societal impacts of our
work.

S1. Qualitative Results

Fig. S1 illustrates the segmentation results of our ap-
proach and TOT [4] on two 50 Salads videos (Eval gran-
ularity). From Fig. S1, UFSA shows superior performance
in extracting the permutation of actions. For example, let us
consider the ‘Add vinegar’ action (highlighted by red boxes)
which happens at different temporal positions in the videos,
UFSA captures the permutation of actions correctly, while
TOT [4] maintains the fixed order of actions and hence fails
to recognize the permutation of actions. Next, for actions
that are missing, such as the ‘Peel cucumber’ action, which
occurs in Fig. S1a but does not appear in Fig. S1b, UFSA
associates a negligible number of frames with this action
class, whereas TOT [4] incorrectly assigns a large number
of frames (highlighted by a green box).

Moreover, we include in Fig. S2 the segmentation results
of our approach, TOT [4], and CTE [3] on other datasets,
namely YouTube Instructions, Breakfast, and Desktop As-
sembly (Orig set). It is evident from Fig. S2 that our seg-
mentation results are consistently closer to the ground truth
than those of TOT [4] and CTE [3].

Nevertheless, our approach has a limitation in handling
repetitive actions. For example, let us look at the ‘Cut’ ac-

∗ indicates joint first author.
{huy,ahmedraza,ahmed,naufil,anas,andrey,zeeshan}@retrocausal.ai.

Encoder Decoder MOF F1

E
va

l

MLP - 47.4 31.8
Transformer - 43.1 34.4

MLP Transformer 47.8 34.8
Transformer Transformer 55.8 50.3

Y
T

I

MLP - 40.6 30.0
Transformer - 42.8 30.2

MLP Transformer 43.2 30.5
Transformer Transformer 49.6 32.4

Table S1. Ablation with MLP encoder. Best results are in bold,
while second best ones are underlined.

tion in Fig. S1, which includes ‘Cut tomato’, ‘Cut cucum-
ber’, ‘Cut cheese’, and ‘Cut lettuce’ and hence occurs mul-
tiple times in the videos, our approach merges the multi-
ple occurrences into a large segment (highlighted by blue
boxes) since it assumes each action can happen only once.
In addition, although TOT [4] has the same drawback, our
combined segments are closer to the ground truth.

S2. Ablation with MLP encoder

We now perform an ablation study by using MLP en-
coder (instead of transformer encoder). Tab. S1 presents
results on 50 Salads (Eval granularity) and YTI datasets.
From the results, transformer encoder alone performs sim-
ilarly as MLP encoder alone (i.e., TOT). Next, MLP en-
coder+transformer decoder yields small improvements over
TOT as features extracted by MLP encoder do not cap-
ture contextual cues that are useful for transformer decoder.
Lastly, large improvements over TOT are achieved when
transformer encoder is used jointly with transformer de-
coder (i.e., our complete model).

1



TOT

Ours
(UFSA)

Ground 
truth

Add vinegar Peel cucumber Cut tomato Place into bowl Mix ingredients

(a) 50 Salads (rgb-21-01).

TOT

Ours
(UFSA)

Ground 
truth

Add vinegarCut tomatoCut cucumber Place into bowl Mix ingredients

(b) 50 Salads (rgb-15-02).

Figure S1. Segmentation results on two 50 Salads videos (Eval
granularity). Red boxes highlight permuted actions. Green boxes
highlight missing actions. Blue boxes highlight repetitive actions.

Method MOF F1

E
va

l Frame 43.1 34.4
Frame+Segment 43.3 37.8

Frame+Segment+Alignment 46.1 45.2

Y
T

I Frame 42.8 30.2
Frame+Segment 43.3 30.5

Frame+Segment+Alignment 44.3 29.4

Table S2. Using A in segment-/alignment-level modules. Best
results are in bold, while second best ones are underlined.

S3. Using A in segment-/alignment-level mod-
ules

In this section, we repeat the ablation experiment in
Tab. 1 of the main paper but we use the fixed-order prior
A (instead of the permutation-aware prior T ) in segment-
/alignment-level modules. Tab. S2 shows results on 50 Sal-
ads (Eval granularity) and YTI datasets. It can be seen from
the results that using A in segment-/alignment-level mod-
ules improves results of frame-level module only, however,
the improvements are smaller than those of using T (see
Tab. 1 of the main paper).

Ground truth

Ours (UFSA)

TOT

CTE

(a) YouTube Instructions (cpr 0027).

Ground truth

Ours (UFSA)

TOT

CTE

(b) Breakfast (P13 webcam01 P13 cereals).

Ground truth

Ours (UFSA)

TOT

CTE

(c) Desktop Assembly (2020-04-19 17-24-35).

Figure S2. Segmentation results on (a) a YouTube Instructions
video, (b) a Breakfast video, and (c) a Desktop Assembly video
(‘Orig’ set).

S4. Comparisons with ABD [2]

Our method addresses the problem of activity-level seg-
mentation, which jointly segments and clusters frames
across all input videos. A related problem is video-level
segmentation, which aims to segment a single input video
only. Video-level segmentation is a sub-problem of activity-
level segmentation and in general easier than activity-level
segmentation. In this section, we evaluate the performance
of a recent video-level segmentation method, i.e., ABD [2],



Method MOF F1

E
va

l ⋆ABD [2] 71.4 -
†ABD [2] 34.2 32.8

†Ours (UFSA) 55.8 50.3
Y

T
I

⋆ABD [2] 67.2 49.2
†ABD [2] 29.4 29.4

†Ours (UFSA) 49.6 32.4

B
re

ak
fa

st ⋆ABD [2] 64.0 52.3
†ABD [2] 23.6 21.7

†Ours (UFSA) 52.1 38.0

O
ri

g

⋆ABD [2] 63.3 60.9
†ABD [2] 15.5 11.0

†Ours (UFSA) 71.2 72.2

E
xt

ra

⋆ABD [2] 60.8 57.1
†ABD [2] 12.0 10.6

†Ours (UFSA) 58.6 55.9

Table S3. Comparisons with ABD [2]. Note that ⋆ denotes video-
level results, whereas † denotes activity-level results. Best results
are in bold, while second best ones are underlined.

for the task of activity-level segmentation. Firstly, for each
input video, we run ABD [2] to obtain its video-level seg-
mentation result. We then represent each segment in the
result by its prototype vector, which is the average of fea-
ture vectors of frames belonging to that segment. Next,
we perform K-Means clustering (K is set as the ground
truth number of actions available in the activity) on the en-
tire set of prototype vectors from all input videos to obtain
the activity-level segmentation result, which we evaluate in
Tab. S3. From the results, it can be seen that †UFSA outper-
forms †ABD [2] in the activity-level setting on all metrics
and datasets. A more advanced clustering method which
incorporates temporal information can be used instead of
K-Means, however, it is out of the scope of our work. In ad-
dition, the video-level results of ⋆ABD [2] are mostly better
than the activity-level results of †UFSA (except for Desktop
Assembly - Orig), which is due to fine-grained video-level
Hungarian matching [5].

S5. Implementation Details

Hyperparameter Settings. Tab. S4 presents a summary
of our hyperparameter settings. For the temporal optimal
transport problem in our frame-level prediction module and
frame-to-segment alignment module, we follow the same
hyperparameter settings used in TOT [4], including ρ and
number of Sinkhorn-Knopp iterations. We keep the fea-
ture dimension d the same as TOT [4]. We use a single
video, including all frames, per batch. In addition, for our
transformer encoder and transformer decoder, we follow the
same hyperparameter settings used in UVAST [1], includ-
ing encoder dropout ratio and decoder dropout ratio. We
set the temperature τ = 0.1 (same as TOT [4]) in Sec. 3.1
of the main paper and the temperature τ ′ = 10−3 (same as
UVAST [1]) in Sec. 3.3 of the main paper.

Computing Resources. All of our experiments are con-
ducted with a single Nvidia A100 SXM4 GPU on Lambda
Cloud.

S6. Societal Impacts
Our approach facilitates video recognition model learn-

ing without action labels, with potential applications in
frontline worker training and assistance. Models generated
from expert demonstration videos in various domains could
offer guidance to new workers, improving the standard of
care in fields such as medical surgery. However, at the same
time, video understanding algorithms in surveillance appli-
cations may compromise privacy, even if it enhances secu-
rity and productivity. Thus, we urge caution in the imple-
mentation of such technologies and advocate for the devel-
opment of appropriate ethical guidelines.

References
[1] Nadine Behrmann, S Alireza Golestaneh, Zico Kolter, Jürgen

Gall, and Mehdi Noroozi. Unified fully and timestamp super-
vised temporal action segmentation via sequence to sequence
translation. In European Conference on Computer Vision,
pages 52–68. Springer, 2022. 3

[2] Zexing Du, Xue Wang, Guoqing Zhou, and Qing Wang. Fast
and unsupervised action boundary detection for action seg-
mentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 3323–3332,
2022. 1, 2, 3

[3] Anna Kukleva, Hilde Kuehne, Fadime Sener, and Jurgen Gall.
Unsupervised learning of action classes with continuous tem-
poral embedding. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
12066–12074, 2019. 1

[4] Sateesh Kumar, Sanjay Haresh, Awais Ahmed, Andrey Konin,
M Zeeshan Zia, and Quoc-Huy Tran. Unsupervised action
segmentation by joint representation learning and online clus-
tering. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 20174–20185,
2022. 1, 3

[5] Rosaura G VidalMata, Walter J Scheirer, Anna Kukleva,
David Cox, and Hilde Kuehne. Joint visual-temporal embed-
ding for unsupervised learning of actions in untrimmed se-
quences. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 1238–1247, 2021.
3



Hyperparameter Value

Temperature (τ ) 0.1
Rho (ρ) 0.07 (E), 0.08 (M), 0.08 (Y), 0.05 (B), 0.07 (O), 0.07 (A)
Number of Sinkhorn-Knopp iterations 3
Feature dimension (d) 30 (E), 30 (M), 200 (Y), 40 (B), 30 (O), 30 (A)
Batch size 1
Learning rate 10−3

Weight decay 10−5

Number of encoder layers 2
Number of decoder layers 2
Encoder dropout ratio 0.3
Decoder dropout ratio 0.1
Temperature (τ ′) 10−3

Table S4. Hyperparameter settings. E denotes 50 Salads (Eval granularity), M denotes 50 Salads (Mid granularity), Y denotes YouTube
Instructions, B denotes Breakfast, O denotes Desktop Assembly (Orig set), and A denotes Desktop Assembly (Extra set).


