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In the appendix, we provide additional details to comple-
ment the main manuscript:

• Appendix 1: Qualitative experiment description and
results in S3DIS 6-fold cross-validation, ScanNet-V2
and STPLS3D.

• Appendix 2: Complexity comparison on S3DIS Area-
5.

• Appendix 3: Societal impact.

• Appendix 4: Limitations.

• Appendix 5: Visualization results on S3DIS Area-5,
Scannet-V2 validation and STPLS3D.

1. Experiment details

Experiment environment. Software and hardware envi-
ronment:

• CUDA version: 11.3

• PyTorch version: 1.10.1

• GPU: Nvidia RTX 2080 Ti × 2

• CPU: Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz

Data license. The experiments are conducted with open-
source datasets. S3DIS [1] has custom license that only
allow for academic usage. ScanNet-V2 [4] is under
MIT license, and STPLS3D [2] is under CC BY-NC-SA
license (Creative Commons Attribution-NonCommercial-
ShareAlike).

Data preprocessing. We adopt data processing and aug-
mentation of Point Transformer [15] for S3DIS, Stratified
Transformer [8] for ScanNet-V2, and STPLS3D from its
original work [2]. Following previous studies [2, 12], we
utilize data augmentation for these datasets.

Training details. Following SQN [6], which is designed
to process purely 3D points in weak supervision, we assign
unlabeled points with an appropriate unlabeled type during
training. Cross-entropy loss is utilized across all experi-
ments, with the unlabeled type being ignored. For evalua-
tion, we use full point cloud scenes to test network perfor-
mance.

Additional experimental results. More results on S3DIS
Area-5, ScanNet-V2, and STPLS3D datasets are shown in
Tables 1, 2, and 3, respectively. We add per-class exper-
imental results in mIoU on all three datasets. By achiev-
ing significant performance on both indoor and outdoor
point clouds, PointCT outperforms other weakly-supervised
large-scale semantic segmentation methods purely based on
3D points by a large margin.

2. Complexity comparison

Table 4 describes computational costs compared to other
works. We evaluate the complexity using two primary met-
rics, including number of parameters in millions (M) and
floating-point operations (FLOPs) in gigabytes (G).

3. Societal impacts

While PointCT with central-based attention may require
additional computational resources, we do not anticipate
any immediate negative societal impact. Furthermore, our
work in 3D weak supervision contributes to the community



Table 1. More results on S3DIS 6-fold cross-validation under 0.1% setting for point cloud semantic segmentation. Underline presents the
best results under fully-supervised settings, and Bold shows the best results under weakly-supervised settings.

Settings Method mIoU ceil. floor wall beam col. wind. door chair table book. sofa board clut.

100% PointNet++ [10] 54.5 - - - - - - - - - - - - -
RandLA-Net [7] 70.0 93.1 96.1 80.6 62.4 48.0 64.4 69.4 76.4 69.4 64.2 60.0 65.9 60.1
PointTrans [15] 73.5 94.3 97.5 84.7 55.6 58.1 66.1 78.2 74.1 77.6 71.2 67.3 65.7 64.8

1% Zhang et.al [13] 65.9 - - - - - - - - - - - - -
PSD [14] 68.0 - - - - - - - - - - - - -
HybridCR [9] 69.2 - - - - - - - - - - - - -

0.1% SQN [6] 63.7 92.5 95.4 77.1 50.8 43.6 58.5 67.0 54.1 67.7 61.0 54.9 53.0 52.7
PointCT 71.2 94.6 97.1 83.8 43.6 51.9 59.6 79.0 83.2 71.3 65.4 68 62.8 65.5

Table 2. More results on ScanNet-V2 test set under 0.1% setting for point cloud semantic segmentation. Italic presents the first row, and
the other is the second row. Underline presents the best results under fully-supervised settings, and Bold shows the best results under
weakly-supervised settings.

Setting Method mIoU bath bed bkshf cab chair cntr curt desk door floor
other pic fridg show sink sofa table toil wall wind

100% PointNet++ [10] 33.9 58.4 47.8 45.8 25.6 36.0 25 24.7 27.8 26.1 67.7
18.3 11.7 21.2 14.5 36.4 34.6 23.2 54.8 52.3 25.2

RandLA-Net [7] 64.5 77.8 73.1 69.9 57.7 82.9 44.6 73.6 47.7 52.3 94.5
45.4 26.9 48.4 74.9 61.8 73.8 59.9 82.7 79.2 62.1

1% Zhang et.al [13] 51.1 - - - - - - - - - -
- - - - - - - - - -

PSD [14] 54.7 57.1 67.8 65.9 46.5 77.8 38.8 52.8 49.2 30.4 93.3
38.7 30.7 43.1 38.2 52.6 66.9 57.2 71.6 60.9 50.6

HybridCR [9] 56.8 58.9 65.8 66.8 42.3 80.2 36.7 61.2 58.1 45.5 90.1
47.5 33.4 41.0 37.5 51.1 70.5 60.8 71.0 60.1 57.9

PointCT 64.3 79.0 76.5 70.7 60.7 83.8 30.9 47.7 54.7 54.9 94.1
49.0 28.8 55.5 73.9 62.1 75.0 57.3 91.1 81.2 59.4

0.1% SQN [6] 56.9 67.6 69.6 65.7 49.7 77.9 42.4 54.8 51.5 37.6 90.2
42.2 35.7 37.9 45.6 59.6 65.9 54.4 68.5 66.5 55.6

PointCT 63.1 79.1 72.5 70.5 62.8 83.5 35.8 60.0 47.5 53.0 94.3
49.9 16.7 53.4 73.4 51.7 77.7 56.2 80.6 81.3 61.3

by reducing manual labeling efforts. Therefore, it allows re-
searchers to focus on other vital aspects, leading to greater
diversity and generality in computer vision research.

4. Limitations

As shown in Table 5, although PointCT outperforms
Point Transformer [15] in 0.01% and 1 point per class (1pt)
settings by 37.5% and 32.5% in mIoU, respectively, we can
observe the performance drops dramatically when the an-
notation level decreases to these levels. The reason behind
this situation can be attributed to the fact that the proposed
network processes raw limited labeled points without any
additional supervision. Furthermore, the network relies on
central-based attention mechanism to extract features from
these points and their relationships to the unlabeled ones. In

extremely low annotation settings, the model is incapable
of learning enough information, thereby lowering general-
izability and overall performance. Therefore, addressing
these cases remains an open challenge for future research.

5. Visualization

In this section, we provide more visualization results in
indoor S3DIS, Scannet-V2 and real-world STPLS3D. As
seen from Figure 1 and 2, the segmentation performance
achieves remarkable results at limited point annotations
compared to ground truth (GT), which effectively captures
primary features from limited labeled points. Furthermore,
the proposed model can filter out noise points in outdoor
scenes under weak supervision. Specifically, the resulting
segmentation presented in Figure 3 is notably more explicit



Table 3. More results on STPLS3D for point cloud semantic segmentation. Underline presents the best results under fully-supervised
settings, and Bold shows the best results under weakly-supervised settings.

Setting Method mIoU ground building tree car light pole fence

100% KPConv [11] 53.7 87.4 78.5 66.2 39.6 41.3 9.3
RandLA-Net [7] 50.5 82.9 66.6 63.8 33.9 41.8 14.2
SCF-Net [5] 50.7 77.8 59.0 64.9 46.4 40.5 15.4
MinkowskiNet [3] 51.4 80.9 74.0 59.2 31.7 45.5 16.8
PointTrans [15] 47.6 80.2 76.4 57.1 36.4 23.7 12.1

0.1% PointCT 49.2 84.1 74.9 62.4 30.4 28.1 15.2
0.01% PointCT 53.2 80.3 72.5 57.2 44.6 54.1 10.2

Table 4. Computational cost.

Method FLOPs (G) Parameters (M)

PointNet++ [10] 7.2 1.0
RandLA-Net [7] 5.8 1.3
PointTrans [15] 5.6 7.8
PointCT 17.9 10.1

(yellow boxes), albeit different from the ground truth (GT).
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Table 5. More results on S3DIS Area-5 under extremely-low labeled point settings. Bold shows the best results under weakly-supervised
settings.

Settings Method mIoU ceil. floor wall beam col. wind. door chair table book. sofa board clut.

0.01% PointCT 39.7 75.2 96.8 56.0 0.0 5.9 18.6 20.4 54.1 81.1 11.9 42.5 21.8 31.6

1pt PointCT 34.7 82.2 92.7 70.9 0 24.3 36.1 23.2 35.1 52.3 0.0 0.0 0.1 0.2
PointTrans [15] 2.2 0.0 0.0 29.2 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 1. Visualization on indoor S3DIS Area-5.



Figure 2. Visualization on Scannet-V2 validation.

[15] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and
Vladlen Koltun. Point transformer. In Proceedings of
the IEEE/CVF international conference on computer vision,
pages 16259–16268, 2021. 1, 2, 3, 4



Figure 3. Visualization on real-world STPLS3D.


