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1. Coordinate for a Continuous Image

Figure 1. An example of calculating local, global, and local rela-
tive coordinates.

For a continuous image I(i), we define the global coordi-
nates as the coordinates that reference the position of a pixel
with respect to the center of the image (i.e., the center is the
origin of the global coordinate system). For a given target
global coordinate xs corresponding to the HR image, we re-
fer to the coordinate of the nearest LR pixel xc as the origin
of the local coordinate system. The local relative coordi-
nate, which serves as the input to the implicit image func-
tion, is then obtained by subtracting xc from xs (i.e., xs-xc).
Both the global coordinate and the local relative coordinate
are then scaled to the interval [−1, 1]. It is worth noting that
these coordinate calculations remain invariant regardless of
the overall image size. To illustrate this concept, consider
the example presented in Fig. 1, which involves a pair of LR
(2× 2)-HR (4× 4) images.

For a target pixel with global coordinate xs =
(0.75, 0.25) in the HR image, the corresponding local co-
ordinate system has xc = (0.5, 0.5) as the origin. By com-
puting xs−xc = (0.25,−0.25)×2, we obtain the local rel-
ative coordinate as (0.5, -0.5). The reason for multiplying
by 2 is to ensure that the local relative coordinate is within
the range [−1, 1], providing a normalized representation ir-
respective of the grid dimensions.

2. Architecture Details

We utilize either EDSR [4] or RDN [7] as encoders, ex-
cluding their up-sampling layers, for baseline feature ex-
traction. The encoder generates a latent code with the same
width and height as the input LR image. Subsequently, we
concatenate the extracted latent code with the output fre-
quency token from the proposed local frequency estima-
tion module and perform the unfolding operations to en-
hance the extracted feature map. The decoder in our pro-
posed method, referred to as the global coordinate modula-
tion module, is composed of two 4-layer MLPs. Each MLP
consists of 256 hidden units and utilizes ReLU and sine ac-
tivations. Following these MLPs, a final dense layer with
256 hidden units is employed. During the decoder stage,
we concatenate the 2D deep features, local relative coordi-
nates, and up-sampling scale ratios, which serve as the input
to one MLP. Additionally, we modulate this input with the
encoded global coordinate information from the other MLP.
This combination enables us to incorporate global coordi-
nate guidance and predict RGB values for each target pixel
using the final dense layer. By querying every pixel, we can
produce the entire image according to the scaling ratios.

3. Dataset Split Details

For CelebAHQ and CelebAHQ-NN-JPEG datasets, we
adopt the same dataset split as previous works [1], utilizing
25,000 images for training and 5,000 images for testing. In
the case of Helen dataset, we follow the same split as pre-
vious works [2, 5], using 2,000 images for training and 50
images for testing.

4. Additional Comparison Results

We have provided a detailed comparison between our
proposed method and state-of-the-art (SOTA) INR-based
SISR methods across a variety of scenarios. Specifically, we
evaluated the performance of our approach under different
upsampling scales and compared its effectiveness with other
methods when different input LR resolutions were used dur-
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Table 1. Quantitative comparison on CelebAHQ with INR-based SISR methods: exploring various input resolutions and up-sampling
scales (PSNR (dB)). The best and second best performances are highlighted in red and blue colors, respectively.

Method
smaller input resolution larger input resolution

×4 ×8 ×16 ×2.6 ×5.3
32-128 32-256 32-512 96-256 96-512

LIIF [1] 29.7036 27.8170 27.0594 35.2839 33.1212
LTE [3] 28.6614 25.6519 24.7687 35.0835 31.3316

DIINN [6] 29.5231 27.5411 26.7018 35.2048 32.8328
ARASFSR 29.8574 27.9548 27.1823 35.3317 33.1916

Table 2. Quantitative comparison of real-world case on CelebAHQ-NN-JPEG with INR-based SISR methods: exploring various input
resolutions and up-sampling scales (PSNR (dB)). The best and second best performances are highlighted in red and blue colors, respectively.

Method
smaller input resolution larger input resolution

×4 ×8 ×16 ×2.6 ×5.3
16-64 16-128 16-256 48-128 48-256

LIIF [1] 22.7435 22.0485 21.6715 28.4689 27.1927
LTE [3] 22.6693 21.3579 20.6498 28.5183 26.7715

DIINN [6] 22.8666 22.1856 21.8145 28.5524 27.2923
ARASFSR 22.9398 22.2392 21.8591 28.6026 27.3158

ing testing. As an extension to this analysis, below, we
further evaluate our ASARFSR method in comparison with
INR-based SISR methods under conditions that simultane-
ously present different upsampling scales and varied input
resolutions. For these experiments, we employ EDSR as the
encoder.

4.1. Evaluation on CelebAHQ

During the training phase, we employ a uniform sam-
pling strategy to select up-sampling scales from the range
of {×1 ∼ ×2}, utilizing a resolution setting of Lr = 64
and Hr∈{64 ∼ 128}. Subsequently, during the testing
phase, we evaluate our method’s performance on smaller
and larger input LR resolutions, encompassing out-of-
distribution scales that exceed ×2.

Table 1 presents a quantitative comparison on Cele-
bAHQ. The proposed method, ARASFSR, outperforms
other approaches across smaller and larger input resolu-
tions, demonstrating its exceptional generalizability in vary-
ing out-of-distribution scales.

Furthermore, Fig. 2 visually compares INR-based SISR
methods specifically for the LR resolution of 32 and the HR
resolution of 256. By closely examining the zoom-in re-
gions, it becomes evident that ARASFSR generates more
precise details, while INR-based SISR methods tend to pro-
duce SR results that exhibit noticeable blocking and blurry
artifacts.

4.2. Real-world cases on CelebAHQ-NN-JPEG

To evaluate the effectiveness of INR-based SISR meth-
ods in real-world scenarios, we conduct performance as-
sessments on CelebAHQ-NN-JPEG. During training, we

train the up-sampling scales within the range of {×1 ∼
×2}, utilizing a resolution setting of Lr = 32 and
Hr∈{32 ∼ 64}. Subsequently, during testing, we evaluate
the performance of our method on both smaller and larger
input LR resolutions, including out-of-distribution scales
that exceed ×2.

The quantitative comparison of different methods is pre-
sented in Table 2. Our proposed method demonstrates su-
perior performance compared to other methods and exhibits
robustness when compared to other INR-based SISR meth-
ods.

Additionally, Fig. 3 provides a visual comparison of
INR-based SISR methods under the 48(LR)-256(HR) test-
ing scenario. It is evident that other methods encounter ar-
tifacts when the input LR resolution changes, primarily due
to the lack of a global view in the implicit image function.
As a consequence, this can result in misplaced or incorrectly
sized facial landmarks, such as eyes, nose, and mouth, in
the super-resolved output. The red arrows indicate an ex-
ample of such artifacts. In contrast, our proposed method
effectively restores facial details without introducing these
artifacts.
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Figure 2. Visual comparison on CelebAHQ with INR-based SISR methods (LR-HR: 32-256).



Figure 3. Visual comparison of real-world case on CelebAHQ-NN-JPEG with INR-based SISR methods (LR-HR: 48-256).
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