Supplementary Material for 2D Feature Distillation for Weakly- and Semi-Supervised 3D Semantic Segmentation

Ozan Unal¹ Dengxin Dai² Lukas Hoyer¹ Yigit Baran Can¹ Luc Van Gool^{1,3,4} ¹ETH Zurich, ²Huawei Technologies, ³KU Leuven, ⁴INSAIT

{ozan.unal, dai, lukas.hoyer, cany, vangool}@vision.ee.ethz.ch

1. Implementation Details

We use Cylinder3D [6] as a baseline 3D model. For the mean teacher, we follow convention and set the update hyperparameter $\alpha = 0.999$ [4]. For the domain adaptive 2D pipeline we follow DAFormer [3]. We heuristically balance the losses by setting $\lambda = 0.001$ and $\lambda_p = 10$. For semi-supervised, we restrict set A in FOVMix to labeled frames to ensure we have direct supervision in all samples and do additional rotation augmentation before the FOVMix operations to increase variability.

2. Datasets

We run our experiments on the ScribbleKITTI [5] dataset that provides realistic weak labels for LiDAR semantic segmentation in the form of scribbles. ScribbleKITTI is built on SemanticKITTI [1,2], the most popular large-scale outdoor-scene dataset for LiDAR semantic segmentation, shares the same *valid*-set. The weak labels only provide annotations to 8% of the point count and completely forgo class boundaries. Thus, compared to dense annotations, labeling times are reduced by 10 fold.

For the 2D syntetic training, we use the GTA-V dataset which contains 24966 synthetic images with pixel level semantic annotation. The images are generated using a modded version of the open-world video game Grand Theft Auto 5.

References

- [1] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall. Semantickitti: A dataset for semantic scene understanding of lidar sequences. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 9297–9307, 2019. 1
- [2] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets robotics: The kitti dataset. *The International Journal of Robotics Research*, 32(11):1231–1237, 2013. 1
- [3] Lukas Hoyer, Dengxin Dai, and Luc Van Gool. DAFormer: Improving network architectures and training strategies for domain-adaptive semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2022. 1
- [4] Ozan Unal, Dengxin Dai, Ali Tamer Unal, and Luc Van Gool. Discwise active learning for lidar semantic segmentation. *IEEE Robotics and Automation Letters*, 2023.
- [5] Ozan Unal, Dengxin Dai, and Luc Van Gool. Scribblesupervised lidar semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 2697–2707, June 2022. 1
- [6] Xinge Zhu, Hui Zhou, Tai Wang, Fangzhou Hong, Yuexin Ma, Wei Li, Hongsheng Li, and Dahua Lin. Cylindrical and asymmetrical 3d convolution networks for lidar segmentation. arXiv preprint arXiv:2011.10033, 2020. 1