
Supplementary Material for Occlusion Sensitivity Analysis with Augmentation
Subspace Perturbation in Deep Feature Space

1. Theory
In this section, we present details of our method with

increased mathematical formality. Some of the actual dis-
cussion and contributions may be repeated to complement
the main idea.

1.1. Actual causality

Actual causality [6] is a framework to formally explain
the way model predictions depend on input variables, what
are the output causes, and how certain changes in the inputs
can change the predictions. It extends counterfactual rea-
soning with contingencies, which means that if a Boolean
function ϕ (x1, x2, · · · , xn) changes when a variable xi is
altered, then ϕ depends on xi.

Moreover, the Degree of Responsibility r is a quantifi-
cation of causality [1], which is based on the size k of the
smallest contingency required to create a counterfactual de-
pendency [2], i.e., the minimal change to alter the function
output.

Definition 1.1 (Singleton cause). Let f be a machine learn-
ing model and x an input, an entry xi1 i2 ··· in (think a pixel)
is a cause of f (x) if and only if there is a subset χ ⊂ x such
that the following hold [2, p. 3]:

1. xi1 i2 ··· in ̸∈ χ

2. output invariance to masking of χ:

Let χ′ ⊂ χ,m ∈ R, then χ′ = m =⇒ ∆f = 0

3. output dependency to masking of xi1 i2 ··· in :

Let m ∈ R, then χ = xi1 i2 ··· in = m =⇒ ∆f ̸= 0

Definition 1.2 (Cause witness). If a subset χ ∈ x and entry
xi1 i2 ··· in satisfy Def. 1.1, then we say χ is a witness to the
fact xi1 i2 ··· in is a cause of x [2, p. 3].

Definition 1.3 (Simplified Degree of Responsibility). If a
subset χ ∈ x and entry xi1 i2 ··· in satisfy the definition of
Singleton Cause from [2], then

r
(
xi1 i2 ··· in |x, f

)
=

1

1 + k
, (1)

where k is the size of the minimal witness, which refers to
the smallest subset of input variables that, when changed,
can demonstrate that a particular input variable has an effect
on the output of a function.

In our terminology, interpreters are algorithms which
process a model and a single input, and output an expla-
nation. In computer vision, a valid explanation could be an
attribution heatmap over the original input image. Next, we
formally define this concept.

Definition 1.4 (Explanation). Let f be a machine learning
model and x an input with output f (x), and S = x⊙M a
masked subset of the input. Then, the explanation E of the
model f given input x is the minimal subset which main-
tains the output [2]

E
(
f |x

)
= min

|S|
S : f (S) = f (x) , |S| > 0 (2)

where | · | is the number of items in the set, e.g., the
number of non-masked pixels

Remark 1 (Triviality). The explanation must not be a null
tensor. Any model will output a prediction for the null ten-
sor, however this would be a trivial explanation for all inputs
sharing the same prediction. For example, if a model out-
puts “dog” for the null tensor, then all images of dogs would
have an empty heatmap as explanation.
Remark 2 (Non-uniqueness). The explanation may not be
unique. Inputs might have symmetries or repetitions, lead-
ing to multiple viable subsets of the same size.

However, computing an explanation is NP-complete and
real interpreters will output approximate explanations [2].

Definition 1.5 (Approximate Explanation). Let f be a ma-
chine learning model and x an input with output f (x). The
approximate explanation Ẽ of model f given input x is the
probability distribution indicating if the input entry belongs
to the explanation x.

Ẽi1 i2 ··· in = p
(
xi1 i2 ··· in ∈ x

)
(3)

Remark 3 (Normalization).∑
i1 i2 ··· in

Ẽi1 i2 ··· in = 1 (4)
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Remark 4 (Approximate Explanation and Degree of respon-
sibility). While explanations can be seen as a binary inclu-
sion mask, i.e., the mask is 1 if the entry belongs to the
explanation. However, the degree of responsibility is a mea-
sure between 0 and 1, so it can be seen as a proxy for prob-
ability.

Remark 5 (Composition). Given the probabilistic nature of
an approximate explanation, the composed approximate ex-
planation can be built when multiple approximate explana-
tions are available (e.g., when multiple interpreters can be
used). The composed explanation can be built by simple
summation and renormalization following Rem. 3.

Definition 1.6 (Minimal Size). Let Ẽ be the approximate
explanation of model f given input x. The explanation min-
imal size is defined as

smin

(
Ẽ
(
f |x

))
=
|S|
|x|

, with f (S) ≈ f (x) (5)

Remark 6 (Minimal Size metric). Def. 1.6 is a viable expla-
nation metric. It can be measured by Algorithm 1. In that
sense, an explanation with low minimal size indicates the
most substantial region for the model was reached.

Algorithm 1 Minimal Size Metric Computation

Require: x ← image, f ← model, H ← heatmap, s ←
number of steps, δ ← tolerance
for i← 1 to |x| in s steps do

S← top i pixels from x based on H
if ||f (x)− f (S) ||1 ≤ δ then return |S|/|x|
end if

end for

1.2. Occlusion Sensitivity Analysis

Occlusion computes explanation heatmaps by replacing
image regions with a given baseline (masking it to 0), and
measuring the score difference in the output [10, 14].

Proposition 1 (Occlusion degree of responsibility). Let f
be a model which outputs a probability score p ∈ [0, 1],
x an input and M as binary mask with the same shape as
x, and ⊙ be the Hadamard product. Then, the degree of
responsibility of the masked region is

r = 1− p (x⊙M)

p (x)

Proof. Let the degree of responsibility be r = 1
1+k

(Def. 1.3), the factor k represents the size of the minimal
witness [2], which should be 0 for relevant causes and ∞
for irrelevant ones, i.e., k ∈ [0,+∞).

First, assume that for every image, there is a defined re-
gion S where it’s minimal witness has size 0, i.e., when we
mask all of the image keeping nothing but S, the prediction
score p output by the model is unaltered. Moreover, as-
sume that the opposite action is also true: masking S while
keeping any other part of the image will lead to a prediction
collapse. Simply put,

p (x− S) = 0 ⇐⇒ p (S) = p (x)

Conversely, if S′ is an irrelevant area, masking it should
render no change,

p
(
x− S′) = p (x) ⇐⇒ p

(
S′) = 0

From such assumption, we should expect that the
masked region minimal witness [2] size must be propor-
tional to the score p (S) of keeping only the cause S, and
inversely proportional to the score p

(
S′) of keeping only

an unimportant region S′.
Thus, we can say

k ∝ p (S)

p (S′)
≡ p (x− S)

|p (x)− p (x− S′) |
≡ p (x⊙M)

|p− p (x⊙M) |
,

which should be 0 when the cause is masked and di-
verge when masking an unimportant region (score does not
change).

Finally, we can effectively ignore the modulo assuming
p (x) ≥ p (x⊙M), and

r =
1

1 + k

=
1

1 + p(x⊙M)
p−p(x⊙M)

=
p (x)− p (x⊙M)

p (x)

= 1− p (x⊙M)

p (x)

(6)

■

Proposition 2 (Occlusion approximate explanation). The
approximate explanation of an input for a single mask is

ẼM
(
f |x

)
= (1−M)

(
1− p (x⊙M)

p (x)

)
Proof. Given M is a binary mask, 1 −M is the inverse
mask, i.e., the masked region is set to 1. Then, from Prop. 1
and Rem. 4 we say the probability of the cause belonging to
the masked region is equal the term 1− p(x⊙M)

p(x) . ■

Lemma 1.1 (Occlusion Sensitivity Analysis (OSA)). The
non-normalized general occlusion sensitivity analysis is the
combination of individual occlusion explanations.

Ẽ
(
f |x

)
=

∑
i

(1−Mi)

(
1− p (x⊙Mi)

p (x)

)
(7)



Proof. Direct from Prop. 2 and Rem. 5 ■

OSA is a simple example of a perturbation-based
method, in which the explanation is a composition of out-
put scores relative variations for each masked input. Prop. 1
defines a way of computing the responsibility of a singu-
lar mask, i.e., the probability it belongs to the cause, and
Algorithm 2 shows how to compose it into an approximate
explanation. OSA pseudocode can be found in the supple-
mentary material.

Algorithm 2 Occlusion Sensitivity Analysis

Require: x← image, f ← model
n← number of masks
l← mask size
p← f (x)
H← 0
for i← 1 to n do

M← mask (i,x.shape, l) ▷ any mask generator
xM ← x⊙M
pM ← f

(
xM

)
H← H+ (1−M)

(
1− pM

p

)
▷ compose (Rem. 5)

end for
return H∑

H ▷ normalize explanation

However, notice the formulation at Lem. 1.1 is different
to the more traditional one defined by [10] in equation 6.
The difference is mostly due to the different assumptions we
took, but they can be shown to be proportionally equivalent,
differing only by a constant. However, the formulation at
Lem. 1.1 will be important for the methods we will propose
next.

1.3. Occlusion Sensitivity Analysis with Deep Fea-
ture Vectors

Lem. 1.1 is a class-specific algorithm. However, most
machine learning models actually output general vectors,
also known as deep feature vector, which encode the input
through the model. These vectors are then later processed
to obtain the probability score of a single feature (class).

Proposition 3 (Representation degree of responsibility).
Let f be a model which outputs a vector f (x) = v =
(vi) , i ∈ [m]. The degree of responsibility of the masked
region is

r =
||v − v (x⊙M) ||p

||v||p
,

where ||v||p stands for the ℓp-norm

Proof. Let f be a model which outputs a scalar probabil-
ity score p (x) ∈ [0, 1]. Then, from Prop. 1, the degree of

responsibility is

r = 1− p (x⊙M)

p (x)

=
p (x)− p (x⊙M)

p (x)

=
f (x)− f (x⊙M)

f (x)

(8)

Now, notice that Prop. 1 assumes f (x⊙M) ≤ f (x)
and p (x) ≥ 0. Then, we can extend this concept to a new
f which outputs vectors by

f (x)− f (x⊙M)

f (x)
=

|f (x)− f (x⊙M) |
|f (x) |

=

||v − v (x⊙M) ||p
||v||p

(9)

■

Remark 7 (Occlusion sensitivity analysis as a special case).
The vector extension in Prop. 3 also shows that Lem. 1.1 is a
special case when we wish to analyze one particular feature
of f (x), so this can be thought as a generalization of said
method.

Lemma 1.2 (Representation Occlusion Sensitivity Analy-
sis). The natural extension to dealing with representations
reintroduces Lem. 1.1 with the only change in the degree of
responsibility calculation.

Ẽ
(
f |x

)
=

∑
i

(1−Mi)
||v − v (x⊙M) ||p

||v||p
(10)

Proof. Analogous to Lem. 1.1. ■

Remark 8 (Representation Occlusion Sensitivity Analysis).
The natural extension to dealing with representations from
Lem. 1.2 reintroduces Lem. 1.1 with the only change in the
degree of responsibility calculation.

1.3.1 Occlusion Sensitivity Analysis with Deep Feature
Augmentation Subspaces

While Lem. 1.2 outlines a general method to determine the
degree of responsibility, its sole dependence on occlusion
may not capture the nuanced relationships inherent in deep
learning models. Recognizing the vital role of data aug-
mentation in training and viewing occlusion as a form of
augmentation, we propose a shift from simple vector com-
parisons to a detailed analysis between two subspaces. A
subspace here denotes a segment of the deep feature vector



space defined by an occluded image and its augmentations.
We strive to assess the similarity between each “occlusion
subspace” and the “reference subspace”, which is formed
by the original image and its augmentations. Extending
Lem. 1.2, we compare the size difference between two sub-
spaces, focusing on their orthogonal degree, and measure
the canonical angles between subspaces derived from var-
ied transformations on the original and occluded images.

Proposition 4 (Subspace degree of responsibility). The de-
gree of responsibility between subspaces is the orthogonal
degree between them, i.e.,

r (M) = 1−
nc∑
i

(
σi

(
VTVM

))2

(11)

Proof. We extend the idea (and the notation) of difference
of vectors to difference of subspaces

r =
||v − v (x⊙M) ||2

||v||2

≡ |V − VM|
|V|

=
|V − VM|
|V − 0|

=
|V − VM|

1
= |V − VM|
= 1− simi (V,VM)

= 1−
nc∑
i

(
σi

(
VTVM

))2

(12)

where |A−B| is a subspace distance, i.e., the orthogonal
degree between A and B [4,5]. V and VM ∈ Rk×d are the
orthonormal basis of the subspaces V and VM respectively.
■

Theorem 1.1 (Occlusion Sensitivity Analysis with Deep
Feature Augmentation Subspace). The natural extension to
dealing with deep feature augmentation subspaces reintro-
duces Lem. 1.2 with the only change in the degree of re-
sponsibility calculation.

Ẽ
(
f |x

)
=

nm∑
i

(1−Mi)

1−
nc∑
j

σ2
j

(
VTVMi

)
(13)

Proof. Analogous to Lem. 1.2. ■

2. Experiments
All models used Imagenet-1k weights provided by

torchvision. Grad-CAM [11] uses Captum [8] GuidedGrad-
Cam implementation. Grad-CAM is set to track the last
convolutional layer on ResNet-50 [7] and the least Batch-
Normalization layer on ViT-B [3] and Swin-V2 [9]. Inte-
grated Gradients [12] uses Captum [8] IntegratedGradients
implementation. We use a null baseline, computing the in-
tegral on 128 steps with Gauss–Legendre quadrature. Oc-
clusion Sensitivity Analysis [13,14] uses Captum [8] Occlu-
sion, which is implemented with a sliding window of binary
masks with 32 pixels and stride of 1. This is equivalent to
approximately 9216 masks per image. Quantitative results
for each interpreter on each model can be found at Tab. 1.



Table 1. Metric scores on ImageNet for ResNet-50, ViT-B and Swin-V2. For deletion and minimal size, lower is better (↓). For insertion,
higher is better (↑). Bold represents the best metric for a given model, while underline is the second best.

Method Model Minimal Size (↓) Deletion (↓) Insertion (↑)

Grad-CAM [11]
ResNet-50 0.532 0.181 0.174
ViT-B 0.512 0.340 0.415
Swin-V2 0.502 0.374 0.279

Integrated Gradients [12]
ResNet-50 0.522 0.086 0.248
ViT-B 0.541 0.223 0.378
Swin-V2 0.492 0.177 0.393

Occlusion [14]
ResNet-50 0.255 0.278 0.456
ViT-B 0.343 0.295 0.521
Swin-V2 0.155 0.410 0.670

Ours
ResNet-50 0.137 0.291 0.530
ViT-B 0.346 0.311 0.507
Swin-V2 0.210 0.387 0.579
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