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Figure 1: First row shows the selection of M closest source images for a given reference image. Middle row shows the
corresponding ground truth depth maps and last row shows the remapped source ground truth depth maps using x-y
coordinates of reference view projection to the source view. During remapping, all additional pixels from the source views
are ignored. The remapped depths are then back-projected to source view to generate mask. Finally, reference view mask is
applied on per-pixel penalty to restrict the penalties. Corresponding final ξp is shown in Fig. 3 of the paper. All depth maps
are shown within respective view mask.

A. Occlusion and its impact

Modeling occlusion of pixels in multi-view setting is a
difficult problem. It is difficult to reason about a pixel in a
view whose corresponding 3D points are occluded in other
view. The problem becomes significant if a penalty is being
attached to all such pixels, like in the proposed multi-view
geometric consistency checking module. The GC module
checks geometric consistency of each pixel across multiple
source views and awards a penalty for inconsistency. As-
signing penalties to occluded pixels and multiplying it with
depth error adversely impacts the training process. Early in
our experiments, we observe that the loss started to explode
with training, i.e. as the model trains the loss values starts
to increase.

Our investigation suggests that the wrongful penalties of
occluded pixels dominated loss during training. We find
that our method becomes robust to this problem with a se-

ries of steps taken. First, we use the closest source view
images as defined by MVSNet [16]. The first row of Fig.
1 shows the source view selection for the given reference
view. Choosing closest view to the reference view reduces
the number of possible occluded pixels. Second, during
forward-backward-reprojection, we remap the source view
depth map as per the x-y coordinate projections of the refer-
ence view to the source view and then, the remapped values
are back-projected to the reference view (see Alg. 2 in the
paper). The last row in Fig. 1 shows the remapped ver-
sion of the source view depth maps. During remapping, all
the occluded as well as the additional pixels of the source
view is dropped and then this remapped version is back-
projected. This handles the extreme cases of occlusion or
additional visible pixels. At the end, once the per-pixel
penalty is generated, we apply the reference view binary
mask on it to do away with any such pixel which is not
part of the scene in consideration (see Fig. 3 in the paper).



The combination of these steps help us control the impact
of wrongful penalties and stabilize the training process.

B. Geometric Consistency Module
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Figure 2. GC module flow-chart for consistency check.

We describe the steps of geometric consistency (GC)
module in Fig. 2. At each stage, the geometric consistency
of estimated depth map is checked across M source views.
For each source view, we perform the forward-backward-
reprojection of estimated depth map to reason about geo-
metric inconsistency of pixels (described in Alg. 2). In this
three-step process, first, we warp each pixel P0 of a refer-
ence view depth map D0 to its ith neighboring source view
to obtain corresponding pixel P

′

i . Then, we back-project
P

′

i into 3D space and finally, we reproject it to the reference
view as P ”

0 using c0. D0, D
′

P
′
i

and D”
P ”

0
represents depth

value of pixels associated with P0, P
′

i and P ”
0 [6]. With

P ”
0 and D”

P ”
0

, we calculate pixel displacement error (PDE)
and relative depth difference (RDD). After taking logical-
OR between PDE and RDD, we assign value 1 to all in-
consistent pixel and zero to all other pixels. The geometric
inconsistency mask sum is generated over M source views
and averaged to generate per-pixel penalty ξp.

C. Depth Interval Ratio (DIR)

ξp Range Stage-wise DIR Acc↓ Comp↓ Overall↓

[1, 3] 2.0, 0.8, 0.40 0.338 0.269 0.3035
[1, 3] 2.0, 0.7, 0.35 0.343 0.264 0.3035
[1, 3] 2.0, 0.7, 0.30 0.331 0.27 0.3005
[1, 3] 1.6, 0.7, 0.30 0.329 0.271 0.300

Table 1. The performance of GC-MVSNet on evaluation set of
DTU [8] with change in stage-wise DIR (depth interval ratio).

DIR directly impacts the separation of two hypothesis
planes at pixel level. For a given stage, the pixel-level depth
interval is calculated as product of DIRstage and depth
interval (DI). The value of DI is calculated using interval
scale and a constant value provided in DTU camera param-
eter files.

Following the trend of modern learning-based methods
[1, 3, 5, 10, 15, 16, 19], we train our model on 512 × 640
resolution and test on 864 × 1152 resolution. To adjust
for the pixel-level depth interval caused by the increase in
resolution, we explore different DIR values for testing on
DTU. We train our model with stage-wise DIR 2.0, 0.8, 0.4
(DIRtrain). such that the refine stage pixel-level depth in-
terval is same as the provided interval scale value of 1.06.
Table 1 shows DIR values for evaluation on DTU, we only
explore smaller values than DIRtrain to compensate for the
increase in resolution. GC-MVSNet achieves its optimal
performance at DIR 1.6, 0.7, 0.3 with ξp ∈ [1, 3], DIRtest.
We use the same DIRtrain and DIRtest with ξp ∈ [1, 2].

D. Stabilizing the Training Process

Figure 3. Validation loss on DTU [8] dataset during training. The
red line shows the unstable model training, validation loss change
in zig-zag manner. Blue line shows stable training with smooth
change in validation loss.

Most of the modern learning-based MVS methods [3, 5,
10,12,13,20] use BatchNorm [7] along with Apex (Nvidia)
for batch synchronization. BatchNorm is most useful with
large batch size. For smaller batch size, like 1 or 3, it de-
grades the training process [7] by poor estimation of popu-
lation mean (µ) and std. (σ) over small batch size.

GroupNorm [14] alleviates this problem by estimating
µ and σ along the channels instead of batch. Weight-
standardization [11] further stabilizes the training and eval-
uation steps. We refer to the original papers for further
understanding of these concepts. GC-MVSNet replaces
BatchNorm with GroupNorm and Weight-standardization
techniques to stabilize the training process. Fig. 3 shows
the difference between model trained with (red line) and
without (blue line) BatchNorm. With the use of Group-
Norm along with Weight-standardization, the evaluation



loss curve become smooth and stable.

E. Depth Map Fusion Methods
The quality of point clouds depends heavily on depth fu-

sion methods and their hyperparameters. Following the re-
cent learning-based methods [3,5,10], we also use different
fusion method for DTU and Tanks and Temples dataset. For
DTU, we use Fusibile [4] and for Tanks and Temples, we
use Dynamic method [3, 12].

Fusibile fusion method uses three hyperparameters, dis-
parity threshold, probability confidence threshold, and con-
sistency threshold. Disparity threshold defines the upper
limit of disparity for points to be eligible for fusion. Proba-
bility confidence threshold defines the lower limit of confi-
dence above which points are eligible for fusion. The con-
sistency threshold mandates that the eligible points be geo-
metrically consistent across as many source views. During
the fusion process, only those points that satisfy all three
conditions are fused into point cloud.

Dynamic fusion method uses only two hyperparameters,
probability confidence threshold and consistency threshold.
Both these hyperparameters have exact same function as in
Fusibile method. The disparity threshold is not provided by
the user, it is dynamically adjusted during the fusion pro-
cess.

F. Accuracy and Completeness Metrics
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Figure 4. The process of calculating accuracy and completeness
for DTU [8] point cloud evaluation.

Accuracy and completeness are two metrics used with
DTU [8] dataset. Fig. 4 shows the process of calculation.
Accuracy is the average of the distance of the first neighbor
from predicted point cloud to ground truth point cloud. It
only considers the points which are below the maximum
threshold for the distance. For completeness, same process
is repeated but with ground truth as referenced point cloud,
i.e. the average of the distance of the first neighbor from the
ground truth point cloud to the predicted point cloud.

G. Use of Existing Assets
We use PyTorch to implement GC-MVSNet. It is based

on CasMVSNet [5] and TransMVSNet [3]. These two

methods heavily borrow code from the PyTorch implemen-
tation of MVSNet [16].

We use preprocessed images and camera parameters of
DTU [8] dataset from official repository of MVSNet [16]
and R-MVSNet [17]. We follow [2] for training and testing
on BlendedMVS [18]. For Tanks and Temples [9] evalua-
tion, we use images and camera parameters as used in R-
MVSNet [17].

H. Point Clouds
In this section, we show all evaluation set points clouds

reconstructed using GC-MVSNet on DTU [8], Tanks and
Temples [9] and BlendedMVS [18] datasets. Fig. 5, 6 and 7
show all evaluation set point clouds from DTU, Tanks and
Temples and BlendedMVS, respectively.



Figure 5. Point clouds reconstructed using GC-MVSNet for all scenes from DTU [8] evaluation set.



Figure 6. Point clouds reconstructed using GC-MVSNet for all scenes from Tanks and Temples [9] intermediate and advanced set.



Figure 7. Point clouds reconstructed using GC-MVSNet for all scenes from BlendedMVS [18] evaluation set.
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